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Figure 1: A single prismatic cube hardware module. 
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We describe the current state of our work to develop a 
self-reconfiguring material composed of robotic building 
blocks, and develop scenarios for the specification of 
hyperforms built with this new type of material that can 
change in response to tangible and gestural input. 
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Introduction 
Self-reconfiguring materials are composed of 
ensembles of robotic modules that can reshape their 
form by downloading and running programs. The 
prismatic cubes [10] we are building, shown in Figure 
1, are an example of such a system. By coordinating 
with their neighbors the cubes can restack themselves 
into a nearly infinite number of forms. The cubes are 
approximately the size of a brick, thus an ensemble of 
these cubes would be appropriate for applications such 
as furniture and structures. Another much smaller 
hardware module still under development, claytronic 
atoms, or catoms [4], will form a clay-like material.  
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We call the shape of an object composed of self-
reconfiguring materials a hyperform because it can vary 
in the four dimensions of space and time. In a world of 
self-reconfiguring materials the boundary between a 
design and an object becomes less clear. A single 
hyperform might express itself as different shapes at 
different times, and an ensemble’s hyperform can be 
changed just by downloading a new program. 

For example, a table hyperform composed of cubes 
could automatically expand as more people sit down. 
By making sure there is always one empty seat the 
table could fold out to make space for additional 
guests; as people get up from the table after dinner, 
the table and chairs could fold away leaving only a 
small dinette with a single empty chair. At the same 
time, the place settings, if composed of catoms, could 
coordinate with the contracting table to clear 
themselves away. The cubes that had been part of the 
expanded table hyperform could be repurposed to 
render a sofa and coffee table where guests could relax 
after dinner. 

We are particularly interested in investigating how self-
reconfiguring materials can support tangible and 
gestural interfaces for design. Below we describe our 
initial work to develop a hardware system that will 
allow tangible and gestural interaction with hyperforms, 
as well as our plans for software systems that will 
enable various modes of hyperform specification.  

Hardware and Control Systems 
The software architecture for programming an 
ensemble of cubes has several interface layers. As 
illustrated in Figure 2, at the top level is a specification 
of the ensemble’s hyperform. A planner takes this 
specification as input and generates a distributed 

program to run on an abstraction of the hardware 
system provided by the control abstraction layer. The 
planner must be distributed to allow this approach to 
scale to ensembles composed of many more modules. 
The control abstraction layer hides the messy details of 
controlling physical motion. The control abstraction 
level takes the movements specified by the planner and 
inserts the low-level instructions required to achieve 
them on the hardware modules. 

To give a simple example, we could download onto an 
ensemble of cubes the specification for a new 
hyperform that is just a static shape; e.g., a couch. We 
would select a from a suite of possible planning 
methods a distributed planning system such as the Hole 
Motion Planner [1] or Metamodule Planner [2] to 
generate instructions to run on the individual modules. 
As the individual modules each ran their instructions 
they would reconfigure the ensemble through the 
application of motion primitives [10], a control 
abstraction we have developed for the prismatic cubes. 
With motion primitives each module can choose when 
to trigger a production rule mapping the current local 
geometry to a new geometry (Figure 3, top). Triggering 
a primitive would initiate a series of actuations on the 
hardware in order to realize this transformation (Figure 
3, bottom). Through individual modules firing these 
motion primitives in a distributed fashion the ensemble 
would reconfigure into the specified couch shape. 
Together these layers comprise a complete self-
reconfiguring hardware system that can support the 
hyperform design applications we will discuss in the 
next section. 

 

Figure 2: Interface layers for the 
prismatic cubes. 

 

 

Figure 3: Slide-across rule (top) and 
control parameters (bottom). 

Hyperform Design 
While there has been a great deal of work on 
developing hardware modules capable of reliable 
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reconfiguration and distributed planners to allow many 
modules to collaborate to realize a given shape [11], 
there has been little investigation of the sorts of tools 
designers will need to specify hyperforms. Below we 
describe two scenarios for specifying hyperforms: in the 
first scenario end-users customize the behavior of a 
furniture design using gesture and direct manipulation; 
in the second scenario a combination of a screen-based 
interface and tangible interaction with the cubes are 
used to specify goal shapes and constraints on 
reconfiguration. 

Interactive Furniture 
Rendering objects in a material with embedded 
computation, actuation and sensing creates the 
potential to interact with familiar typologies in new 
ways. We have chosen a module size that lends itself to 
furniture. By developing interactive furniture 
hyperforms we aim to explore several key ideas: 

1. hyperforms can respond on their own initiative to 
changes in the environment; 

2. gestures can invoke morphing commands; and 
3. end-users can create new commands on the spot 

by directly manipulating the system. 

For example, the expanding table we discussed earlier 
would be designed to automatically resize itself as new 
people sit down. However, at times it may be desirable 
to manually set the size of the table. By making a 
pulling gesture at the edge of the table it expand in 
that direction; by making a pushing gesture it would 
contract. Grabbing a single module in the table and 
wiggling it would put it into editing mode, allowing 
modules to be manually manipulated to indicate a new 
command. For example, the edge of the table could be 
pulled up to form a lip, and this behavior could be 

associated with a double knock gesture. Afterward 
when there was a spill at the table a double knock 
would raise the lip to contain the spill. 

 

Figure 4: Building a chair in 
simulation with our ruleset design 

application. 

Tangible Specification of Goal Shapes 
This scenario showcases the potential for self-
reconfiguring materials to be used as an input device as 
well as a medium for realizing designs. Our ruleset 
design application, currently under development, will 
combine a screen interface with tangible input provided 
by directly manipulating a set of blocks. Goal forms will 
be demonstrated to the system by stacking the blocks 
in a particular configuration. The blocks will discover 
the geometry of their current form and communicate it 
to the application running on a personal computer. A 
screen interface (Figure 4) will present controls for 
compiling a distributed ruleset to produce the current 
shape, using a modified version of Jones and Mataric’s 
ruleset compiler [5]. Rulesets for different shapes could 
then be selected and played back. When a ruleset is 
played, it will be downloaded onto the modules, and 
each module will initiate movement primitive transitions 
triggered by the geometry of neighboring modules.  

The screen interface will also provide tools for 
inspecting and manually editing compiled rulesets. The 
compiler produces rulesets for form-seeking behaviors 
that converge to a single static form, but the 
application will also include a variety of rulesets for 
stable dynamic behaviors, such as those for lateral 
gaits presented in [3]. 

Discussion 
We have developed the prismatic cubes and motion 
primitives with the goal of supporting interaction with 
hyperforms through direct manipulation and gesture. 
Although we are still developing software systems to 
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support these modes of interaction, we believe that the 
interaction models themselves are an important step in 
thinking about self-reconfiguring materials that informs 
our work on low-level hardware and control systems. 

So far we have produced a handful of prismatic cubes, 
and due to the technical and financial hurdles involved 
in mass-producing these modules we expect to build 
only on the order of tens of these modules on which to 
run our software in the near future. However we feel 
that we can make progress by validating these 
interaction techniques with a combination of 
experiments on hardware and in simulation. By 
realizing smaller hyperforms on our limited ensemble of 
hardware modules we can demonstrate the feasibility of 
self-reconfiguration and interaction techniques; we can 
demonstrate the viability of larger and more complex 
hyperforms in simulation. The development of these 
new technologies and interaction techniques promises 
to dramatically increase the responsiveness of the built 
environment to our ever-changing demands. 
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