

Hyperform Specification
Designing with Self-reconfiguring Materials

 Abstract

Figure 1: A single prismatic cube hardware module.

Michael Philetus Weller

CoDe Lab

Carnegie Mellon University

Pittsburgh, PA 15213 USA

philetus@cmu.edu

Mark D Gross

CoDe Lab

Carnegie Mellon University

Pittsburgh, PA 15213 USA

mdgross@cmu.edu

Seth Copen Goldstein

Claytronics Group

Carnegie Mellon University

Pittsburgh, PA 15213 USA

seth@cs.cmu.edu

We describe the current state of our work to develop a
self-reconfiguring material composed of robotic building
blocks, and develop scenarios for the specification of
hyperforms built with this new type of material that can
change in response to tangible and gestural input.

Keywords
Modular robotics, tangible interaction, hyperforms.

ACM Classification Keywords
H.1.2: Models and Principles: User/Machine Systems;
H.5.2: Information Interfaces and Presentation: User
Interfaces: Interaction Styles.

Introduction
Self-reconfiguring materials are composed of
ensembles of robotic modules that can reshape their
form by downloading and running programs. The
prismatic cubes [10] we are building, shown in Figure
1, are an example of such a system. By coordinating
with their neighbors the cubes can restack themselves
into a nearly infinite number of forms. The cubes are
approximately the size of a brick, thus an ensemble of
these cubes would be appropriate for applications such
as furniture and structures. Another much smaller
hardware module still under development, claytronic
atoms, or catoms [4], will form a clay-like material.

Copyright is held by the author/owner(s).

CHI 2009, April 4 – April 9, 2009, Boston, MA, USA

ACM 978-1-60558-247-4/08/04.

 2

We call the shape of an object composed of self-
reconfiguring materials a hyperform because it can vary
in the four dimensions of space and time. In a world of
self-reconfiguring materials the boundary between a
design and an object becomes less clear. A single
hyperform might express itself as different shapes at
different times, and an ensemble’s hyperform can be
changed just by downloading a new program.

For example, a table hyperform composed of cubes
could automatically expand as more people sit down.
By making sure there is always one empty seat the
table could fold out to make space for additional
guests; as people get up from the table after dinner,
the table and chairs could fold away leaving only a
small dinette with a single empty chair. At the same
time, the place settings, if composed of catoms, could
coordinate with the contracting table to clear
themselves away. The cubes that had been part of the
expanded table hyperform could be repurposed to
render a sofa and coffee table where guests could relax
after dinner.

We are particularly interested in investigating how self-
reconfiguring materials can support tangible and
gestural interfaces for design. Below we describe our
initial work to develop a hardware system that will
allow tangible and gestural interaction with hyperforms,
as well as our plans for software systems that will
enable various modes of hyperform specification.

Hardware and Control Systems
The software architecture for programming an
ensemble of cubes has several interface layers. As
illustrated in Figure 2, at the top level is a specification
of the ensemble’s hyperform. A planner takes this
specification as input and generates a distributed

program to run on an abstraction of the hardware
system provided by the control abstraction layer. The
planner must be distributed to allow this approach to
scale to ensembles composed of many more modules.
The control abstraction layer hides the messy details of
controlling physical motion. The control abstraction
level takes the movements specified by the planner and
inserts the low-level instructions required to achieve
them on the hardware modules.

To give a simple example, we could download onto an
ensemble of cubes the specification for a new
hyperform that is just a static shape; e.g., a couch. We
would select a from a suite of possible planning
methods a distributed planning system such as the Hole
Motion Planner [1] or Metamodule Planner [2] to
generate instructions to run on the individual modules.
As the individual modules each ran their instructions
they would reconfigure the ensemble through the
application of motion primitives [10], a control
abstraction we have developed for the prismatic cubes.
With motion primitives each module can choose when
to trigger a production rule mapping the current local
geometry to a new geometry (Figure 3, top). Triggering
a primitive would initiate a series of actuations on the
hardware in order to realize this transformation (Figure
3, bottom). Through individual modules firing these
motion primitives in a distributed fashion the ensemble
would reconfigure into the specified couch shape.
Together these layers comprise a complete self-
reconfiguring hardware system that can support the
hyperform design applications we will discuss in the
next section.

Figure 2: Interface layers for the
prismatic cubes.

Figure 3: Slide-across rule (top) and
control parameters (bottom).

Hyperform Design
While there has been a great deal of work on
developing hardware modules capable of reliable

 3

reconfiguration and distributed planners to allow many
modules to collaborate to realize a given shape [11],
there has been little investigation of the sorts of tools
designers will need to specify hyperforms. Below we
describe two scenarios for specifying hyperforms: in the
first scenario end-users customize the behavior of a
furniture design using gesture and direct manipulation;
in the second scenario a combination of a screen-based
interface and tangible interaction with the cubes are
used to specify goal shapes and constraints on
reconfiguration.

Interactive Furniture
Rendering objects in a material with embedded
computation, actuation and sensing creates the
potential to interact with familiar typologies in new
ways. We have chosen a module size that lends itself to
furniture. By developing interactive furniture
hyperforms we aim to explore several key ideas:

1. hyperforms can respond on their own initiative to
changes in the environment;

2. gestures can invoke morphing commands; and
3. end-users can create new commands on the spot

by directly manipulating the system.

For example, the expanding table we discussed earlier
would be designed to automatically resize itself as new
people sit down. However, at times it may be desirable
to manually set the size of the table. By making a
pulling gesture at the edge of the table it expand in
that direction; by making a pushing gesture it would
contract. Grabbing a single module in the table and
wiggling it would put it into editing mode, allowing
modules to be manually manipulated to indicate a new
command. For example, the edge of the table could be
pulled up to form a lip, and this behavior could be

associated with a double knock gesture. Afterward
when there was a spill at the table a double knock
would raise the lip to contain the spill.

Figure 4: Building a chair in
simulation with our ruleset design

application.

Tangible Specification of Goal Shapes
This scenario showcases the potential for self-
reconfiguring materials to be used as an input device as
well as a medium for realizing designs. Our ruleset
design application, currently under development, will
combine a screen interface with tangible input provided
by directly manipulating a set of blocks. Goal forms will
be demonstrated to the system by stacking the blocks
in a particular configuration. The blocks will discover
the geometry of their current form and communicate it
to the application running on a personal computer. A
screen interface (Figure 4) will present controls for
compiling a distributed ruleset to produce the current
shape, using a modified version of Jones and Mataric’s
ruleset compiler [5]. Rulesets for different shapes could
then be selected and played back. When a ruleset is
played, it will be downloaded onto the modules, and
each module will initiate movement primitive transitions
triggered by the geometry of neighboring modules.

The screen interface will also provide tools for
inspecting and manually editing compiled rulesets. The
compiler produces rulesets for form-seeking behaviors
that converge to a single static form, but the
application will also include a variety of rulesets for
stable dynamic behaviors, such as those for lateral
gaits presented in [3].

Discussion
We have developed the prismatic cubes and motion
primitives with the goal of supporting interaction with
hyperforms through direct manipulation and gesture.
Although we are still developing software systems to

 4

support these modes of interaction, we believe that the
interaction models themselves are an important step in
thinking about self-reconfiguring materials that informs
our work on low-level hardware and control systems.

So far we have produced a handful of prismatic cubes,
and due to the technical and financial hurdles involved
in mass-producing these modules we expect to build
only on the order of tens of these modules on which to
run our software in the near future. However we feel
that we can make progress by validating these
interaction techniques with a combination of
experiments on hardware and in simulation. By
realizing smaller hyperforms on our limited ensemble of
hardware modules we can demonstrate the feasibility of
self-reconfiguration and interaction techniques; we can
demonstrate the viability of larger and more complex
hyperforms in simulation. The development of these
new technologies and interaction techniques promises
to dramatically increase the responsiveness of the built
environment to our ever-changing demands.

Acknowledgements
This research was supported in part by the National
Science Foundation under Grants ITR-0326054 and
CNS-0428738.

References
[1] De Rosa, M, Goldstein, S C, Lee, P, Campbell, J D
and Pillai, P. Scalable Shape Sculpting Via Hole Motion:
Motion Planning in Lattice-Constrained Module Robots.
Intl. Conf. on Robotics and Automation (ICRA), IEEE,
(2006), 1462-1468.

[2] Dewey, D, Srinivasa, S S, Ashley-Rollman, M P,
De Rosa, M, Pillai, P, Mowry, T C, Campbell, J D and
Goldstein, S C. Generalizing Metamodules to Simplify
Planning in Modular Robotic Systems. Intelligent Robots
and Systems (IROS), IEEE, (2008).

[3] Fitch, R and Butler, Z. Scalable Locomotion for
Large Self-Reconfiguring Robots. Intl. Conf. on Robotics
and Automation (ICRA), IEEE, (2007), 2248–2253.

[4] Goldstein, S C, Campbell, J D and Mowry, T C.
Programmable Matter. IEEE Computer, 38, 6. (2005),
99-101.

[5] Jones, C and Mataric, M J. From Local to Global
Behavior in Intelligent Self-Assembly. Intl. Conf. on
Robotics and Automation (ICRA), IEEE, (2003), 721-
726.

[6] Karagozler, M E, Campbell, J D, Fedder, G K,
Goldstein, S C, Weller, M P and Yoon, B W. Electrostatic
Latching for Inter-Module Adhesion, Power Transfer,
and Communication in Modular Robots. Intl. Conf. on
Intelligent Robots and Systems (IROS), IEEE, (2007),
2779-2786.

[7] Rus, D and Vona, M. Crystalline Robots: Self-
Reconfiguration with Compressible Unit Modules.
Autonomous Robots, 10, 1. (2001), 107–124.

[8] Suh, J W, Homans, S B and Yim, M. Telecubes:
Mechanical Design of a Module for Self-Reconfigurable
Robotics. Intl. Conf. on Robotics and Automation
(ICRA), IEEE, (2002), 4095–4101.

[9] Vassilvitskii, S, Yim, M and Suh, J. A Complete,
Local and Parallel Reconfiguration Algorithm for Cube
Style Modular Robots. Intl. Conf. on Robotics and
Automation (ICRA), IEEE, (2002), 117–122.

[10] Weller, M P, Karagozler, M E, Kirby, B, Campbell,
J D and Goldstein, S C. Movement Primitives for an
Orthogonal Prismatic Closed-Lattice-Constrained Self-
Reconfiguring Module. Workshop on Self-Reconfiguring
Robots at Intelligent Robots and Systems (IROS),
(2007).

[11] Yim, M, Wei-Min, S, Salemi, B, Rus, D, Moll, M,
Lipson, H, Klavins, E and Chirikjian, G S. Modular Self-
Reconfigurable Robot Systems. Robotics and
Automation, 14, 1. (2007), 43-52.

	Copyright is held by the author/owner(s).
	CHI 2009, April 4 – April 9, 2009, Boston, MA, USA
	 Abstract
	Keywords
	ACM Classification Keywords
	Introduction
	Hardware and Control Systems
	Hyperform Design
	Interactive Furniture
	Tangible Specification of Goal Shapes

	Discussion
	Acknowledgements
	References

