
Stretch-A-Sketch: a Dynamic Diagrammer

Mark D Gross
College of Architecture and Planning

University of Colorado
Boulder, Colorado 80309-0314

mdg@cs.colorado.edu

Abstract

Stretch-A-Sketch is a pen-based drawing program that
combines recognition of hand-drawn glyphs with
constraint based maintenance of spatial relations. The
recognition program identifies hand drawn glyphs, spatial
relations between them, and higher-level configurations,
such as graph and tree diagrams and floorplan bubble
diagrams. Stretch-A-Sketch then maintains the essential
relations in these configurations as the user edits the
diagram.

1. Introduction: Diagram editing and
visual languages

Visual languages deal in diagrams. Dataflow graphs
and Petri nets, analog and digital circuit diagrams, and
Venn diagrams are all expressions of visual language.
Traditionally, these expressions have been made with pen
and paper, for communication between people. To
employ diagrams in communicating with computers we
need facilities for making, editing, and interpreting these
diagrams.

A common way to support a particular visual language
is with a structured graphical editor programmed with the
syntax of the diagrams to be made. The editor offers a
limited vocabulary of elements and it restricts the
assembly of elements to syntactically correct spatial
relations. For example, a structured flowchart editor
provides blocks for imperative and conditional statements
and the means to link entry and exit points with
connecting lines. Users are thereby allowed to produce
only valid language expressions; the structured editing
also makes easy for the program to recognize and parse
visual expressions for a language interpreter. One goal of
visual language research, therefore, is to automatically
generate structured editors from a grammar that describes
the syntax of a class of diagrams.

Structured editors for visual languages have their
problems, however. Users may be disinclined to use a
structured editor in the early stages of thinking about a
problem precisely because it imposes firm syntactic rules.
A structured editor requires commitments to precision and
detail that may be inappropriate for a user in the
conceptual stages of problem-solving. Also, compared
with pen and paper the structured editor is tedious for
making a quick sketch. Even an ordinary draw program
like MacDraw constrains the shapes of lines and elements
and it imposes a menu and palette interface that is
awkward and slow to use. Given these alternatives, users
may prefer to explore a problem off-line, employing pen
and paper because it is direct and unreactive, and switch to
a graphical editor only after working out a conceptual
scheme.

 More generally, let us take visual language to include
the diagrams, sketches, and drawings made for design, for
example, mechanical and architectural design. Although
the syntax of these design drawings may be less strictly
defined than languages specifically designed for
computation, we find the same course of development
from rough sketch to precise and detailed specification.
Early and conceptual sketches contain elements and
relationships that persist throughout later more precise
phases of designing. As with computational visual
languages, certain configurations and spatial relationships
are syntactically required or forbidden. However, in a
design drawing other relationships are also employed by
the designer, to achieve functional or stylistic goals.

The goal of Stretch-A-Sketch is to combine some of
the advantages of structured editing, in particular
knowledge of the domain syntax, with the ease,
directness, and flexibility of drawing with pen and paper.
With the pen based interface of Stretch-A-Sketch a user
can begin to make diagrams without worrying about
correctness or completeness. When the user is ready, the
program tries to recognize configurations in the diagram
according to previously defined syntactic rules, or spatial
relations. Once Stretch-A-Sketch recognizes a

Publication Reference
“Stretch-A-Sketch, a dynamic diagrammer.” In A. Ambler ed., IEEE Symposium on Visual Languages 1994.

configuration, the program maintains its essential
relations during subsequent editing. For example if the
program recognizes that the user has drawn a graph with
nodes and arcs, then it maintains connections as the user
moves the nodes around. Thus Stretch-A-Sketch aims to
smooth the transition between the rough and sometimes
ill-formed diagrams of early exploration and the more
precise and well formed drawings that characterize the later
phases of problem solving.

Stretch-A-Sketch employs two techniques from
computer graphics: the recognition of hand drawn shapes
and spatial relations and bottom up parsing into more
complex configurations, and the maintenance of graphical
constraints among drawing elements. In combining these
two techniques, Stretch-A-Sketch shows how constraint
based drawing, i.e. making diagrams behave according to
rules, can be incorporated into a direct pen based interface.
The remainder of the paper first reviews the two
underlying techniques, then describes their combination in
Stretch-A-Sketch. Section 2 presents the recognizer for
hand drawn input used in Stretch-A-Sketch and section 3
briefly reviews constraint based graphic editing. Section
4 outlines the features of the Stretch-A-Sketch program
and shows an example application, editing a flowchart.
Section 5 concludes with a summary and discussion.

2. The Cocktail Napkin recognizer

This section provides an overview of the hand-drawn
diagram recognizer in Stretch-A-Sketch -- the “electronic
cocktail napkin” [7]. Recently much work has been done
on recognizing hand-drawn input [2, 12, 14].
Recognition rates for these programs are around 95% and
any of them might work well for Stretch-A-Sketch. The
approach followed here is simple and easy to implement;
it can be trained interactively during use; and it is
sufficiently fast and accurate. The current version
recognizes capital letters, numbers, and simple shapes
(circles, triangles, boxes, arrows, etc.) without noticeable
delay on a Quadra. Lines of various types (horizontal,
vertical, dotted, dashed, and wiggly lines) are recognized as
a special case. The algorithm can recognize glyphs drawn
in 90 degree rotations, reflections, and reversal of the pen
path in varying sizes and aspect ratios. Rotations
between 90 degree multiples are handled by training the
program with slightly rotated samples.

The diagram recognizer in Stretch-A-Sketch consists of
three main parts: (1) a trainable low-level recognizer for
hand drawn glyphs; (2) an analyzer that identifies spatial
relations among glyphs; and (3) a graphical search and
matching procedure to define higher level recognizers for
configurations of glyphs in specific spatial relations.
Each of these parts is summarized below.

2.1 A trainable recognizer for glyphs

The low-level recognizer reads a stream of x,y, and
pressure values from a Wacom digitizing tablet. A glyph
begins when the user brings the pen near the tablet and it
ends when the pen is removed for longer than a certain
time (1/5 second by default). The glyph input routine
identifies pen up and pen down events, counts strokes, and
finds the glyph’s bounding box . The resulting ‘raw
glyph’ is processed by a low-level routine that transforms
the stream of point coordinate values into a pen path, a
sequence of square numbers through which the pen moved
(see figure 2). The low level routine also identifies
corners where the pen slowed down and several points
were sampled close together; and it records the glyph’s
approximate size and aspect ratio. The resulting structure
is the input glyph, which is compared with a library of
previously trained templates.

GLYPH -- BOX.1676
TYPE BOX
NSTROKES 1
NCORNERS 4
PEN-PATH (7 4 1 2 3 6 9 7)
SIZE LARGE
ASPECT RATIO SQUARE
LOCATION NIL
ROTATION NIL

Figure 2. Features of a Box glyph.

The templates in the library identify a set of allowable
pen paths, stroke counts, corner counts, aspect ratios,
sizes, and rotations for each glyph type. The recognizer
compares these characteristics of the input glyph with the
previously trained templates. If no candidate is found,
matching criteria are relaxed and the match is tried again.
If several candidates are found, then the templates most
closely matching the input glyph are returned. The
recognizer permits both ‘no match’ and ‘multiple
candidate’ matches, and depending on user switch settings
the program asks the user to immediately identify the
input glyph or allows it to remain ambiguous. The user
can add to the library of templates just by drawing and
identifying several instances of the new glyph.

2.2 Identifying spatial relations

Once the recognizer has identified the diagram glyphs,
it analyzes spatial relations among them. The program
maintains a list of binary spatial relations, which it
applies as predicates to the diagram elements. The
relations are defined in terms of the bounding box, size,
and starting and ending points of elements. Figure 3
shows spatial relations identified for two simple
configurations.

Figure 3. Spatial relations in simple configurations.

A potential problem that the analyzer must avoid is
reporting too many relations, relations that are true but
uninteresting. Several methods are used to screen
uninteresting or redundant relations. First, spatial
relations are organized in a hierarchy of specificity; for
example, ‘concentric’ is more specific than ‘contains’.
The analyzer identifies the most specific relations that
describe the configuration of elements. (The user can
relax or modify this description by hand, as described in
the following section). Second, spatial relations are also
organized by the type of element they apply to. For
example, ‘connects,’ ‘intersects,’ and ‘tee-intersection’
apply only to lines; others such as ‘contains’, or
‘overlaps,’ apply only to shapes. Finally, the analyzer
also consults a table that lists the commutative and
transitive properties of relations, which enables it to avoid
reporting many redundant relationships. For example, if
two elements overlap, the relation need only be reported
once.

2.3 Defining higher level recognizers

The low level glyph recognizer and the spatial relations
analyzer together provide the components for defining
higher level recognizers that can identify configurations of
diagram elements. The cocktail napkin program provides

a dialog for users to define these recognizers. The user
first draws an instance of the configuration to be
recognized, then views a symbolic description of the
glyphs and spatial relations that the program identifies,
adjusts the symbolic description, and finally names it,
adding the recognizer to a list that the program
automatically applies.

After drawing an instance of the configuration, the user
can view and adjust the symbolic description produced by
the analyzer using a ‘search parameters’ dialog. The
dialog (figure 4) displays the configuration, lists its
elements with their types and the spatial relations among
them, and provides control buttons for adjusting the
description. Using the control buttons the user can (1)
delete unwanted elements or relations from the
description; (2) make element types more general or more
specific; and (3) make spatial relations more general or
specific.

The four buttons at the lower left of the dialog are used
to test, define, and manage the list of higher level
recognizers. The ‘search’ button allows the user to apply
a recognizer to the diagram to search for instances of a
particular configuration, which is useful for testing a
symbolic description. The ‘define’ button adds the
recognizer to the list that the program automatically
applies. The ‘delete’ and ‘rename’ buttons enable the user
to remove and rename the recognizers in the list.

For example, from the description shown in figure 4,
the user can delete the unwanted ‘right-of; relation, use the
‘general’ button to relax the two ‘concentric’ relations to
the more general ‘contains,’ and to relax the boxes to the
more general ‘shape.’ (Figure 5). Finally the user names
the recognizer linked-labeled-boxes and adds it to the list
of named recognizers.

glyph types

spatial
relations

control buttons

list of
recognizers

sample
configuration

Figure 4. ‘Search parameters’ dialog to view, adjust, and define higher level recognizers.

Figure 5. Adjusted linked-labeled-boxes description

When the new recognizer is applied to a diagram, it
identifies all instances of two shapes containing a letter
connected by a line and replaces these elements by a new
compound element linked-labeled-boxes whose parts are
the shapes, letters, and line. Then Stretch-A-Sketch will
maintain the relations, keeping the letters in the boxes
and the boxes linked by the line.

2.4 Rectification considered harmful

Many pen-based systems turn crude sketches into neat
drawings, straightening and latching lines, and
transforming blobs into geometric shapes. Although
rectified drawings make for better presentations, they are
exactly wrong for conceptual thinking. They suggest a
false commitment, definiteness, and precision, and they
deprive the user of opportunities to see alternative
interpretations in the rough sketches. Therefore in
Stretch-A-Sketch, hand-drawn lines and shapes remain as
initially drawn unless and until the user explicitly requests
that a particular glyph be rectified. Even then, Stretch-A-
Sketch retains original hand-drawn input so that the user
can switch back to the hand-drawn form.

3. Constraint based graphic editing

One way to construct a graphic editor for a visual
language is to use constraint programming language to
describe and enforce the language’s spatial syntax.
Starting with Sketchpad [13], constraint based graphic
editors have been built that maintain spatial relations
among drawing elements e.g. [3, 11, 6]. Aligned objects
stay aligned and objects stretch, squeeze, and move about
to maintain sizes, proportions and spatial relations
established by the user. These techniques can be applied
to maintain the specific spatial relations of a visual
language such as dataflow or logic circuit diagrams.

Generally, constraint based techniques enable the user
to program the interactive edit behavior of a design
drawing. In computer aided design, a constraint based
graphic editor has a distinct advantage over a conventional
draw program: a user can state desired relations and the
machine ensures that they are maintained. The edit

behavior of drawing elements can be programmed to
simulate the behavior of real-world objects. For example,
in Janus-Constraints, a kitchen design program [8],
windows were constrained to occur only in walls;
appliances to keep their backs to the wall; and sinks to
center under windows.

Constraint techniques have been used in the automatic
layout of diagrams for visual languages [5] and to adjust
layouts during editing to minimize change [10]. But in
most automatic layout schemes constraints are coded into
the layout editor for a particular type of diagram; the
constraints that Stretch-A-Sketch enforces are specified by
its higher level recognizers. Also, most automatic
layout editors use structured palette interfaces to create the
initial diagram; Stretch-A-Sketch maintains constraints on
a hand-drawn diagram.

3.1 Pen interface for constraind graphic editing

Empirical studies bear out the proposition that mouse
based structured drawing tools hamper editing in a visual
language. Citrin compared mouse-based structured
drawing programs with a pen-based gestural recognizer,
concluding that pen-gesture based interfaces have distinct
advantages for visual language editing [4]. In another
study Apte and Kimura showed that drawing graphic
diagrams such as Petri nets and flowcharts with a pen is
twice as fast as drawing them with a mouse [1].

Constraint based graphics editors typically employ a
draw program interface with a tool palette of primitive
shapes, operations, and constraints (alignments, etc.).
This interface style imposes two barriers between the user
and the drawing. First, each element must be selected
from a menu, placed, and sized in the drawing. Second,
each constraint must be explicitly applied by identifying
elements and their spatial relation. The advantage of this
interface is that there is no room for ambiguity -- the user
is forced to be explicit about the elements and their
relations. The disadvantage is that it can be quite tedious.

The pen based interface of Stretch-A-Sketch avoids
these barriers at the risk of incorrectly guessing the user’s
intentions. The user draws directly without selecting
from menus, placing, or sizing, and the program’s glyph
recognizer is responsible for identifying the diagram
elements. Whereas with a menu interface, the user must
choose to draw either a circle or a rectangle, a pen based
interface allows the user to draw ambiguous shapes and
identify them later. A shape can be identified as ‘either a
circle or square,’ or it can remain unidentified. Likewise,
the user need not explicitly select and apply constraints
from a menu; instead Stretch-A-Sketch identifies relevant
spatial relations in the diagram.

A known difficulty with identifying constraints from
drawings is that in addition to the intended relations, any
particular drawing also exhibits other relations that are
entirely incidental. For example, a diagram intended to
indicate only that one element contains another may
happen to represent the elements as circles, misleadingly
suggesting that the shape of the objects is also important.
One solution is to observe which relations the user does
not change during editing and promote them as constraints
[9].

Stretch-A-Sketch uses contextual information to
identify which constraints in a diagram are relevant. For
example, in a floorplan bubble diagram the relevant
relations are size, shape, and adjacency of the bubbles; in
a graph the relevant relations are connections between
nodes. After identifying elements and spatial relations in
the user’s diagram, the recognizer tries to identify parts of
the drawing as instances of previously defined
configurations. The configuration recognizers identify
which properties and relations are essential and which are
incidental, and then Stretch-A-Sketch asserts the essential
relations as constraints. (In the event that no
configuration is recognized Stretch-A-Sketch asserts all
the relations it finds as constraints). In any case, the user
can manually adjust the constraints, adding, deleting, and
modifying them as desired.

4. Diagrams with behavior

Stretch-A-Sketch is built on top of the Cocktail
Napkin recognizer program. The user draws on the
Wacom digitizing tablet to make marks in the diagram
window. Except for a few gestural commands (e.g. erase,
clear screen, overtrace), every mark made with the pen is
added to the drawing. The Stretch-A-Sketch extension
enables the user to manipulate the hand drawn diagram,
adding conventional graphics editing operations to the
paper-like interface. The user can select diagram elements
and delete, move, resize, and rotate them with the pen.
To distinguish these editing commands from drawing new
glyphs the user must press a button on the pen barrel.
However, Stretch-A-Sketch goes beyond conventional
pen-based graphic editors (such as the draw program on
the Apple Newton, or InkWare’s NoteTaker program) by
maintaining spatial relations among the elements of the
drawing. For example, in a diagram consisting of
connected nodes and arcs, Stretch-A-Sketch maintains the
connections as the user adjusts the positions of nodes.
This specific edit behavior (maintaining connectivity) is
not built in to Stretch-A-Sketch; rather it is obtained from
diagram recognizers that can be programmed by users.

4.1 Constraints

Constraints on elements in Stretch-A-Sketch are of
two basic types -- constraints on the attributes of
individual elements, and constraints on the spatial
relations between pairs of elements. Global relations
such as “no two nodes may overlap,” or “the minimize
the distance between nodes” are not supported.

Constraints on element attributes are obtained from the
library of glyph templates. Each glyph template describes
an allowable range for each property of the element (used
for recognition), and these ranges constitute constraints to
be maintained during editing. For example, the template
provides each element a size constraint based on its
bounding box area, a shape constraint based on its aspect
ratio, and a constraint that specifies which rotations are
legal for the element.

Constraints on spatial relations between elements are
obtained from the spatial relations analyzer or from the
description of a recognized configuration. For example,
when a configuration is recognized as a graph, Stretch-A-
Sketch establishes constraints on the diagram that keep
the arcs connected to the nodes.

4.2 Propagation of constraint

As Stretch-A-Sketch asserts constraints among diagram
elements, each element maintains a list of the relations it
is engaged in and the other elements to which it is related.
After an element is moved, resized, or reoriented
constraint management routines adjust the sizes and
positions of related elements to maintain the constraints
on the diagram. The routines that propagate constraint
among related elements can do it in various ways,
resulting in different edit behaviors. For example, if the
user tries to move one of the nodes in a graph, several
things could happen. The node could snap back to its
original position, the arcs connecting it with the rest of
the graph could stretch, or the entire graph configuration
could move.

Stretch-A-Sketch decides how to propagate constraints
using a precedence table of element types. For each pair
of element types the table contains an entry describing
default editing behavior. For example, the (circle, line)
entry of the table indicates that when a circle propagates
constraint to a line, the line should be stretched rather
than moved. A relation can also be declared a one way
constraint. For example, the ‘contains’ relation can be set
to keep the contained element inside the containing one,
rather than allowing the containing element to grow or
move.

4.3 Modifying constraints

The user can escape the constraint maintenance that
automatically enforces existing diagram relations, by
holding down a modifier key on the keyboard (the Shift
key) before selecting elements to edit. This removes any
constraints that apply to the element. This is useful, for
example, to cut out a piece of a graph and move it to the
side of the diagram for later use.

The user can also selectively add, delete, and modify
constraints to the initial set that Stretch-A-Sketch
identifies and applies to the diagram. First the user
selects a set of elements whose constraints are to be
edited, and calls on the analyzer to show the relations
presently in effect. Using the ‘search parameters’ dialog
(figure 4), the user can edit them. Stretch-A-Sketch then
applies the new relations as constraints on the selected
diagram elements.

4.4 A flowchart example

The simple flowchart in Figure 6a was drawn using
Stretch-A-Sketch, and recognized as an instance of a
flowchart. As the individual glyphs were drawn, the low
level recognizer identified them as boxes, a diamond, a
circle, lines, and letters. Three higher level recognition
rules were then used:

• a “labeled-shape” recognizer identifies any shape
containing a letter;

• “poly-line” identifies sets of line segments that
connect or tee (as between C, D, and E), and

• “flowchart” identifies labeled shapes that are
connected to a line segment or to a poly-line.

The labeled-shape recognizer asserts a containment
constraint between the shape and the letter and allows the
user to treat the combined element as a unit. The poly-
line recognizer asserts connection constraints between its
line segments. Finally, the flowchart recognizer asserts
the connections between labeled shapes and lines as
constraints.

Figure 6a. Flowchart as initially drawn.

In Figure 6b, the user has selected and moved the
elements C and D to the right and E to the left, in
preparation for adding another element after E in the
conditional branch. The line between B and C, and the

tee’d poly-line have adjusted by stretching to maintain
their connections.

Figure 6b. User moves C & D to right; E to left.

In Figure 6c, the user has (1) deleted the segment of
the poly-line leading from E; (2) drawn a new element F;
and (3) drawn lines to connect F with E and with the
fragment of the previous poly-line. At this point, the
poly-line recognizer notices that the new segment can be
added to the poly-line, and the flowchart recognizer asserts
as constraints the connections between E and F, and
between the tee poly-line and F.

Figure 6c. Element F is inserted between E and D.

Finally, in Figure 6d the diagram is displayed in
rectified form.

A B

E

D

F

C

Figure 6d. The flowchart in rectified form.

Note that between Figures 6b and c the user has had to
delete and redraw some connections in order to add element
F. However, this extra work is small compared to what it
would take to perform this same editing task using a
normal draw program with a palette interface. To draw
each element, the user would have had to choose the
appropriate shape from the palette, drag it to its location,
and possibly size it; then choose a text tool and enter the
label on the keyboard. The shape and the text would need
to be grouped together. Then to link the elements the user
would choose a line or poly-line tool from the palette and
touch both elements being connected. After moving
elements the user would have to adjust their connections.
To be sure, a palette based graphic editor that is
specifically designed for flowchart editing could avoid

these problems. Linked elements would be programmed
to stay connected; when a shape is chosen, the user would
supply a text label, and so forth. But with Stretch-A-
Sketch the user can obtain a similar effect by
programming the recognizers with the appropriate
constraints.

5. Summary

Stretch-A-Sketch combines two techniques from
interactive computer graphics—recognition of hand-drawn
diagrams and constraint based drawing—to make an
environment that supports construction and editing of
hand drawn diagrams that behave according to certain rules
or constraints. The program identifies elements and
spatial relations in the hand-drawn input and enforces and
maintains these constraints during editing. When Stretch-
A-Sketch can recognize the diagram as an instance of a
particular type (e.g. a graph), it maintains only the
essential relations in the diagram. When it cannot, all
relations in the diagram are made into constraints and the
user must adjust them during editing. The editing
environment enables the designer to move, resize, and
reorient diagram elements, to work with them either in
original hand-drawn forms or in ‘cleaned up’ rectified
form, and to interactively add, change, and delete
constraints.

The current version of Stretch-A-Sketch is a prototype;
it has several clear shortcomings. Perhaps most
important for visual programming language editing,
Stretch-A-Sketch does not handle global spatial
constraints, only local ones. In addition, the control of
propagation of constraint among the diagram elements is
crude and new user-defined element types must be added to
the precedence table, which may be inconvenient. The
process of modifying constraints using the search
parameters dialog is also quite clumsy. It would be easier
to edit the constraints graphically, on the diagram itself,
rather than resorting to the symbolic description in a
separate dialog.

Stretch-A-Sketch suggests a way to add constraint
based editing behaviors to hand drawn diagrams that is
both cognizant of particular syntactic rules from the
domain and forgiving of diagrams that do not conform to
the syntax. It makes entering visual language expressions
in the early stages of thinking by supporting unstructured
input from the pen easier, and it provides a path to more
structured and parsable representations needed for further
language processing.

Acknowledgments

Discussions with Wayne Citrin and Ellen Do were
helpful in developing the ideas behind Stretch-A-Sketch.
Trenchant remarks from the anonymous reviewers led to a
substantial revision of the paper. Support from the
National Science Foundation Grant DMI-9313186 has
been instrumental for constructing the constraint
programming environment.

References

1 . A. Apte, D. Kimura. “A Comparison Study of the
Pen and the Mouse in Editing Graphic Diagrams”, 1993 IEEE
Symposium on Visual Languages, pp. 352- 357.

2 . A. Apte, V. Vo, T.D. Kimura. “Recognizing
Multistroke Geometric Shapes: An Experimental
Evaluation”, ACM conference on User Interface and Software
Technology (UIST) 1993, pp. 121-128.

3 . A. Borning., “Programming Language Aspects of
ThingLab” ACM Transactions on Programming Languages
and Systems, Vol. 3, No. 4, 1981, pp. 353-387.

4 . W. Citrin. “Requirements for Graphical Front Ends
for Visual Languages”, 1993 IEEE Symposium on Visual
Languages, pp. 142-149.

5 . E. Dengler, M. Friedell, J. Marks. “Constraint-
Driven Diagram Layout”, 1993 IEEE Symposium on Visual
Languages, pp. 330-335.

6 . M.D. Gross. “Graphical Constraints in CoDraw”,
1992 IEEE Workshop on Visual Languages, pp. 81-87.

7 . M.D. Gross, “Recognizing and Interpreting
Diagrams in Design”, Advanced Visual Interfaces ‘94, Edited
by T. Catarci, M.F. Costabile, S. Levialdi, G. Santucci, ACM
Press (to appear).

8 . M.D. Gross, C. Boyd. “Constraints Provide Domain
Behavior in a Construction Kit”, University of Colorado
Computer Science Technical Report CU-CS-583-92, 1992.

9 . D. Kurlander. “Graphical Editing by Example”,
Proc. Human Factors in Computing (InterCHI) 1993, Addison
Wesley / ACM Press, pp. 529.

10. M. Minas, G. Viehstaedt. “Specification of Diagram
Editors Providing Layout Adjustment with Minimal Change”,
1993 IEEE Symposium on Visual Languages, pp. 324-329.

11. G. Nelson., “Juno — A Constraint-based Graphics
System” Computer Graphics, Vol. 19, No. 3, 1985, pp. 235-
243.

12. D. Rubine., “Specifying Gestures by Example”
Computer Graphics, Vol. 25, No. 4, 1991, pp. 329-337.

13. I. Sutherland. Sketchpad - a Graphical Man-Machine
Interface [Ph.D. Dissertation]. M.I.T., 1963.

14. R. Zhao. “Incremental Recognition in Gesture-
Based and Syntax-Directed Diagram Editors”,Proc. Human
Factors in Computing (InterCHI) 1993, ACM / Addison
Wesley, pp. 95-100.

