
ORIGINAL ARTICLE

Hyperform specification: designing and interacting
with self-reconfiguring materials

Michael Philetus Weller • Mark D. Gross •

Seth Copen Goldstein

Received: 1 February 2009 / Accepted: 1 September 2009

� Springer-Verlag London Limited 2010

Abstract We are on the verge of realizing a new class of

material that need not be machined or molded in order to

make things. Rather, the material forms and re-forms itself

according to software programmed into its component

elements. These self-reconfiguring materials are composed

of robotic modules that coordinate with each other locally

to produce global behaviors. These robotic materials can be

used to realize a new class of artifact: a shape that can

change over time, i.e., a four-dimensional shape or a hy-

perform. Hyperforms present several opportunities: objects

such as furniture could exhibit dynamic behaviors, could

respond to tangible and gestural input, and end-users could

customize their form and behavior. To realize these

opportunities, the tangible interaction community must

begin to consider how we will create and interact with

hyperforms. The behaviors that hyperforms can perform

will be constrained by the capabilities of the self-recon-

figuring materials they are made of. By considering how

we will interact with hyperforms, we can inform the design

of these systems. In this paper, we discuss the life cycle of

a hyperform and the roles designers and end-users play in

interacting with hyperforms at these various stages. We

consider the interactions such a system could afford as well

as how underlying hardware and software affect this

interaction. And we consider the extent to which several

current hardware systems, including our own prismatic

cubes (Weller et al. in Intelligent Robots and Systems.

IEEE, 2009), can support the hyperform interactions we

envision.

Keywords Modular robotics � Tangible interaction �
Hyperforms � Programmable matter

1 Introduction

1.1 A new kind of material

Making things—giving objects form—has traditionally

involved a manufacturing process such as machining a

block of material or pouring molten material into a mold.

However, recent advances in robotics herald a new kind of

material that can receive a digital description of a desired

form and arrange itself into that shape. One implementa-

tion of such a self-reconfiguring material is an ensemble of

robotic modules. Each module runs a small program;

together the programs encode the ensemble’s behavior. By

coordinating with neighbors, modules respond to external

stimuli and arrange themselves into a potentially vast

number of forms.

Self-reconfiguring materials promise to revolutionize

the creation and distribution of physical objects much as

digital audio files have revolutionized the distribution and

content of music. The digital description of a chair or a

bottle opener could be downloaded and then realized from

a reservoir of self-reconfiguring material. Unused objects

return to this reservoir to provide raw material for other

objects.

M. P. Weller (&) � M. D. Gross

Computational Design Lab, Carnegie Mellon University,

Pittsburgh, PA 15213, USA

e-mail: philetus@cmu.edu

M. D. Gross

e-mail: mdgross@cmu.edu

S. C. Goldstein

Computer Science Department, Carnegie Mellon University,

Pittsburgh, PA 15213, USA

e-mail: seth@cs.cmu.edu

123

Pers Ubiquit Comput

DOI 10.1007/s00779-010-0315-7

1.2 Form in four dimensions

More significantly, an object composed of this new mate-

rial need not be limited to a single static form. Instead, the

currently running program can change its form. We call a

form that varies in the four dimensions of space and time a

hyperform; a single hyperform expresses itself as different

shapes at different times. A new hyperform is realized just

by loading a new program into the material.

For example, the ‘social table’ hyperform automatically

expands as more people sit down (Fig. 1). The table grows

to make space for additional guests (drawing more material

from a household reservoir as needed); as people get up

from the table after dinner, the social table melts away

leaving only a small dinette with a single empty chair. The

material that had been part of the expanded table returns to

the reservoir and later renders a sofa and coffee table for

guests to relax after dinner.

We call the description of a hyperform a hyperform

specification; it defines a set of states with individual forms

and behaviors, instructions for transitioning between these

states, and constraints to maintain during transitions.

1.3 A challenge for tangible interaction

Clearly, hyperforms will require changes in the way we

create and interact with things. Fortunately, hyperforms

can also provide a powerful new class of design tools: we

can build full-scale functional prototypes from the outset;

and we can use a hyperform to customize its own specifi-

cation—its form and behavior could be directly manipu-

lated [16] through tangible interaction. This combination of

self-reconfiguring materials and tangible modeling tech-

niques will make everyone a potential designer.

In this paper, we envision a future hyperform ecosystem

in which the current flow of objects from design to

manufacture to consumption has been disrupted by this

new technology. Our aim is to engage the tangible inter-

action community in exploring this space.

The behaviors that hyperforms can realize will be con-

strained by the capabilities of the self-reconfiguring mate-

rials they are made of. Some first and critical decisions

about the implementation of modular robotics are already

being made. By addressing the question of how we will

interact with self-reconfiguring materials to create hyper-

forms, and how we will interact with hyperforms to control

their behavior, the tangible interaction community can

guide the development of this emerging technology.

Hyperforms are a radical vision of pervasive and ubiq-

uitous computation: not only is computation embedded in

everyday objects, everyday objects are made of computa-

tional materials; and the primary mode of interacting with

this embedded computation is through tangible interfaces

and voice and gesture commands. To realize this vision,

researchers will need to understand the constraints and

affordances of self-reconfiguring materials.

We begin (in Sect. 2) with a scenario illustrating the

potential for self-reconfiguring materials to disrupt current

practice in creating and distributing objects. Through

developing the ‘social table’ hyperform scenario further we

provide a (wildly speculative) vision of the different roles

people could play in the hyperform life cycle.

To ground further discussion, in the following sections,

we address the state of the art in self-reconfiguring mate-

rials and tangible interaction. In Sect. 3, we give a brief

description of the hardware and software components that

comprise a modular robotics ensemble and discuss the way

the limitations of these systems constrain the behavior of

hyperforms. In Sect. 4, we outline a framework describing

the affordances of ensembles of robotic modules relevant

to supporting tangible interaction.

Section 5 introduces a specific hardware and software

prototype that we have been working on, the prismatic

cubes. We discuss features we could add to our this system

to support hyperform interaction. In Sect. 6 we present a

second, (slightly) less ambitious hyperform scenario that

serves two purposes: to illustrate the systems and modes of

interaction we have introduced in the previous sections in

context; and to identify some of the challenges in realizing

these behaviors. In the final section, we revisit the

dimensions of this new interaction design space, and sug-

gest promising areas for further research.

2 The hyperform life cycle: a scenario

The following (speculative) scenario illustrates the poten-

tial for hyperforms to revolutionize the way we think about

creating, acquiring and using objects. While hyperforms

Fig. 1 A ‘social table’ hyperform that automatically grows as more

people sit at the table so one empty chair is always available. Additional

material to grow the form is drawn from a household reservoir

Pers Ubiquit Comput

123

will allow anyone to participate in the design process, due

to the technical complexity of self-reconfiguring materials

some aspects of hyperform specification will require spe-

cialized knowledge. We can manage this complexity by

dividing the life cycle of a hyperform into stages defined by

the different roles people play in interacting with it

(Fig. 2). Designers will need to consider the novel com-

plexities of forms that change through time. They will be

supported in this task by the ability to build and manipulate

full working prototypes, and by screen-based tools that

expose the constraints and algorithms that control system

behavior. They will be expected to define not only the form

and behavior of an object, but also interfaces to support

customization by end-users. For end-users, objects will no

longer be products in a box, but digital files to download,

customize, and share with others.

2.1 The composition of a hyperform

Our scenario describes the creation, distribution and cus-

tomization of the ‘social table’ hyperform mentioned above

(see Fig. 1). The social table has three distinct components:

the table form that grows and shrinks as people sit at and

leave the table; chair forms that track the number of places

at the table; and a serving platform that materializes on

demand to convey serving platters and dishes. We call each

such component of a hyperform with a recognizable form

and behavior a phrase after the minimal recognizable

component of music composition. The metaphor with

music is intended to highlight that these components are

not necessarily static but can vary through time. Also,

components may be repeated several times within a larger

hyperform composition, often with a particular rhythm,

e.g., a table hyperform might feature pairs of leg phrases at

regular intervals, with more legs added as the table

expands.

2.2 Behaviors are defined as hybrid automata

To make the design of forms that vary through time more

manageable, we define their behavior in terms of static (or

relatively stable dynamic) states, as well as transitions

between these states, and events that trigger transitions,

following the formalism of hybrid automata [8]. We define

the social table’s state space in terms of the number of

places at the table. When the table senses that someone has

joined the meal, the table determines the desired static

configuration of the new state with one more place, and

then transitions to the new state. To manage complexity,

we decompose designs into phrases (as mentioned above, a

recognizable combination of form and behavior). The

serving platform in the center of the table would be defined

as a phrase anchored to the table phrase’s top surface. It has

its own states and transitions which are independent of the

main table phrase. We might define the state of the serving

platform in terms of its velocity: stationary or moving

along the table. This simple state transition hybrid auto-

mata framework can cover a wide range of hyperforms.

2.3 Stages of hyperform design: scripting,

implementation, and use

Figure 2 illustrates the several stages of design and

implementation of hyperforms. Hyperform scripters will

fashion reusable routines to define behaviors such as a table

adding legs as it gets longer. Later, hyperform imple-

menters will draw on these routines to incorporate behav-

iors and phrases into individual hyperform specifications.

Finally, end-users interact with these hyperforms to control

transitions between states. They may also customize the

behavior of a hyperform through interfaces established by

scripters and implementers. We do not intend to suggest

that these stages must be implemented by different people;

rather we envision these stages as different roles a person

can play in interacting with a system. For example, the

same person who adopts the role of an implementer to

design a new table hyperform will adopt the role of an end-

user when she sits at the table to have a meal.

2.3.1 Scripting generic behaviors

In the first—meta-design—stage, hyperform scripters cre-

ate and package libraries of reusable behaviors and phrases.

For example, to protect end-users from issues such as

structural failure during transitions, a scripter might specify

Fig. 2 The stages of the hyperform life-cycle (clockwise from upper
left): scripting defines reusable parametric forms and behaviors;

implementation specifies a complete hyperform at a hyperform

workstation; specifications are distributed by posting them online; to

use a hyperform the specification is downloaded and realized from a

local reservoir of material; and end-users can customize a form and

post the new specification for others to download

Pers Ubiquit Comput

123

generic table phrases with geometric and functional con-

straints. The length and width of the table surface are

defined parametrically, and the rest of the shape, through

functional constraints: (1) tile the top surface of the table;

(2) maintain structural stability; and (3) leave clear a ‘leg

envelope’ under the table. These abstract definitions form

the basis for more complete specifications that the imple-

menters craft, in the next stage, to protect the integrity of

the table while allowing end-users to customize aspects of

a specification.

2.3.2 Implementing specific instances

Building on the work of the scripters, hyperform imple-

menters create new specifications at a hyperform work-

bench—a personal computer running screen-based tools

with a work surface next to a reservoir of self-reconfiguring

material. Depending on the scale of objects, the work

surface may be an actual workbench, the floor, or even an

outside work yard.

The hyperform workbench allows the implementer to

define and edit states either by defining parameters and

constraints onscreen (automatically generating the speci-

fied shape on the work surface) or by directly manipulating

material set in a special ‘free modeling’ mode. For exam-

ple, the initial one-person table is defined by importing an

abstract table phrase and then manipulating it in free

modeling mode. The implementer can create larger ver-

sions of the table that accommodate more people by

adjusting the length parameter for the desired number of

places.

To establish transitions, the implementer uses an onsc-

reen state flow interface to connect states in various

sequences. State transitions—triggered by timeouts, sensor

events, or gestures—are managed by one of several low-

level reconfiguration planners built into the underlying

software; the particular planner chosen depends on the

desired behavioral characteristics. The implementer uses a

timeline interface to inspect the transition behavior gen-

erated by the planner, and to place additional constraints on

this transition or vary parameters over time in order to tune

its behavior.

Once the chair and table forms are modeled, the

implementer crafts a sensor profile to determine whether a

chair is occupied and then tests it by actually sitting in the

chair. In the state flow diagram, changes in chair occu-

pancy increment or decrement the table’s length parameter,

triggering reconfiguration. Next, to define the serving

platform, the implementer puts the table in free modeling

mode and selects a rectangular area in the middle of the

table, pulling it up (as discussed in Sect. 4) to create a

raised platform. Then, the implementer defines a pushing

gesture to trigger a transition into sliding mode that

continues until a user makes a stop gesture, or the platform

reaches the end of the table.

2.3.3 Use

Once a hyperform has been implemented it is ready for use.

The end-user downloads the social table specification and

then activates it to assemble an empty one-place configu-

ration using material from the household reservoir. In this

stage of the table’s life cycle it is responsive to both

changes in its environment as well as explicit tangible and

gestural commands.

As people sit down for a meal the table automatically

expands. When the table senses a serving platter with food,

a platform rises up underneath it. As people serve them-

selves they slide the platform over to the next person by

making a pushing gesture. After everyone has eaten, as

people rise from the table they place their dishes on the

serving platform to return them to one end of the table

while the other contracts.

During use, explicit gestures made at the table control its

behavior. For example directing a pushing gesture toward

one side of the serving platform causes it to glide down the

table. For finer-grained control, we use the ‘sticky hands’

interaction technique1; when you hold your hand near, but

not touching, one side of the platform for a few seconds it

begins to follow your hand, maintaining a constant dis-

tance, so you can position the platform more precisely. To

serve yourself, you hold your hand near the inside face of a

platform carrying a serving platter until the platform

‘‘sticks,’’ then pull it closer to make the food easier to

reach.

2.3.4 Customization

End-users cannot only interact with a hyperform in pre-

determined ways; they can also customize its behavior. By

putting a hyperform phrase into ‘editing mode’ with a

voice or gesture command, an end-user can customize

shapes and behaviors within parameters established during

the previous implementation phase. For example the social

table allows end-users to customize the shape of its legs.

After putting a leg into editing mode a foot is first molded

at the bottom, then propagated to all the other legs. Or an

end-user can add a new phrase to the social table, for

example, downloading a ‘basin’ phrase from a library and

associating it with a ‘double fist’ gesture. When someone

1 Although in the future a hyperform may be able to sense someone

pushing on its surface and actuate to create the impression that the

shape is being physically manipulated in real time, implementing

such a behavior demands sophisticated sensing and actuation. The

‘sticky hands’ technique is a useful approximation that can be

implemented with simple controllers and inexpensive sensors.

Pers Ubiquit Comput

123

spills a drink, quickly making a double fist gesture over the

spill now generates a depression to contain the mess. A

serving platform raises around the basin and slides to the

end of the table. Finally, we can share this customized

version of the social table with others by posting its digital

description.

2.4 Rethinking design

As this scenario illustrates, self-reconfiguring materials

have the potential to disrupt current systems for creating

and distributing objects. Rather than acquiring manufac-

tured goods delivered in a box, specifications for objects

are downloaded and realized from a reservoir of reusable

material. Instead of being finalized in the first stage of

creation, designs are refined in stages all the way down to

end-users who can post customized forms online to share

with others. We urge other researchers to consider how this

technology could reshape the way we think about the

design process at the same broad scope; and to envision

how new processes could give people greater control over

their built environment.

3 Constraints of modular robotics

The behavior of a hyperform is constrained by the prop-

erties of the self-reconfiguring material of which it is made.

Therefore a basic understanding of the properties of these

materials can help members of the ubiquitous computing

and tangible interaction communities both to envision how

these technologies can be applied and to propose how these

materials could better support envisioned behaviors. Below

we give a brief introduction to one promising technology

for realizing this kind of material, modular robotics. We

briefly describe the hardware and software components

typical of such a system and discuss the potential limita-

tions of the current state of the art. We focus here not on

realizing new self-reconfiguring materials, but on envi-

sioning how we could create and interact with them.

3.1 Modular robotics as a self-reconfiguring material

Over the past 15 years a significant amount of work on

self-reconfiguring modular robots has resulted in a number

of working prototype systems [26]. Some systems support

articulated structures with functional limbs, while others

support lattice structures that can be arranged in a variety

of shapes. Polybot [25], an instance of the former, is a kit

composed of actuated elbow modules with connectors at

each end and cubic hub modules with a connector on each

face. An ensemble of Polybot modules can reconfigure

itself between various articulated structures such as a

snake, a loop, and a quadruped to locomote with different

gaits.

Although self-reconfiguring articulated structures have

many potential applications, lattice systems (Fig. 3) are a

better choice for self-reconfiguring materials as they can

realize (nearly) arbitrary 3D forms. Two varieties of lattice

module have been particularly successful. Rotating lattice

modules such as M-TRAN [10], Molecube [29] and

ATRON [5] feature powerful actuators that can rotate

several modules around an axis at once as shown in

Fig. 3a. Prismatic lattice modules such as the Telecube

[18] and our own prismatic cubes [24] (described later, in

Sect. 5) extend and retract their faces to latch to neighbors.

When connected they form a cubic lattice, and by coordi-

nating with neighbors a module slides over one space

within the lattice (Fig. 3b).

3.2 The composition of an ensemble of modular robots

The software architecture for controlling an ensemble of

modular robots typically has several interface layers

(Fig. 4). At the top level is a specification of the ensem-

ble’s hyperform. A planner takes this specification as input

and generates a distributed program to run on individual

hardware modules. The control abstraction layer hides the

messy details of controlling physical motion. It takes

movements specified by the planner and converts them into

low-level instructions to actuate the hardware modules.

Together these layers comprise a complete self-reconfig-

uring material that can realize hyperforms.

(a)

(b)

Fig. 3 Lattice modules can implement self-reconfiguring materials.

By coordinating with nearby modules to move between the cells of a

lattice, these systems can realize almost any configuration. a Rotating

lattice modules such as ATRON [5] move groups of neighboring

modules to a new lattice position by rotating them around an axis.

b By extending adjacent faces modules in prismatic lattice systems

such as the prismatic cubes [24] can slide across one lattice cell

Pers Ubiquit Comput

123

3.3 Constraints of hardware self-reconfiguration

Two significant constraints affect the behavior of this kind

of ensemble. The first constraint has to do with the control

abstractions designed to manage the actuation and latching

schemes by which modules self-reconfigure. Most algo-

rithms in the control abstraction layer do not allow modules

to move individually, but rather move groups of modules at

once. For example, the ‘sliding cube’ control algorithm [2]

(Fig. 5a) treats groups of modules as a single cube meta-

module that can move one lattice space sideways or diag-

onally. To enable rendering higher granularity structures

with ATRON hardware modules, Christensen et al. [3]

developed the idea of an emergent metamodule in which

the structure is not subdivided into larger metamodules

a priori, but rather individual modules opportunistically

recruit neighbors to create a temporary metamodule when

they need to move, and then return to the general pool

when they reach their destination. Similarly, the prismatic

cubes’ movement primitives [24] allow an ensemble to be

reconfigured by applying production rules as shown in

Fig. 5b and c. Applying one of these motion primitives

triggers the targeted modules to temporarily group together

to perform the requested transition.

These control abstractions restrict the way individual

modules can move through a lattice and thus constrain the

shapes that an ensemble can realize. For example, sliding

cubes and motion primitives can transfer modules through

the center of an occupied lattice, whereas ATRON’s

emergent metamodules require an adjacent empty region of

the lattice to rotate through. These low-level constraints

need not be explicitly addressed by a hyperform imple-

menter, but are handled by the planning layer. An example

of one way these constraints would manifest is that a

system would refuse to realize small-scale features that its

planner could not reach.

The second significant constraint on ensemble behavior

is imposed by the distributed algorithm employed to con-

trol the behavior of the modules, as we discuss below.

3.4 Constraints of distributed planning algorithms

The demands of controlling an ensemble of independent

robotic agents constrains the kinds of behaviors that an

ensemble can realize in several ways. As with computer-

controlled fabrication, designers working with self-

reconfiguring materials produce instructions for a machine

to follow rather than a drawing to guide a machinist in a

shop. However, with tools such as a computer-controlled

mill the underlying manufacturing process has not chan-

ged; the mill executes more or less the same operations as a

machinist would, it just requires more detailed instructions.

In contrast, this sort of detailed centralized planning scales

poorly to large numbers of robotic modules. Instead, a

distributed plan must guide each individual module to

respond to its local circumstances to produce a cohesive

behavior for the entire ensemble.

Different planning algorithms produce hyperform tran-

sitions with different characteristics, so specifying hyper-

forms will require a basic familiarity with the properties of

different styles of planning algorithms. Below we describe

several relevant properties of hyperform transitions that

depend on the choice of planning algorithm.

3.4.1 Structural stability

One obvious concern is that during a reconfiguration a

structure could become unstable and collapse. This is a

Fig. 4 Layered architecture of

an ensemble of modular robots,

from high-level description of

behavior down to underlying

hardware

(a)

(b)

(c)

Fig. 5 The sliding cubes metamodule (a) is a simple control

abstraction but often requires many hardware modules to implement

a single movement; motion primitives (b, c) provide finer-grained

control by representing transitions as production rules [24]. a A

sliding cube metamodule can move one space either straight or

diagonally in any direction. Each metamodule is composed of several

hardware modules. b The slide-up motion primitive moves a

hardware module straight one space (corresponding hardware move-

ments shown in Fig. 3b). c The round motion primitive rotates a

2 9 2 9 3 group of hardware modules

Pers Ubiquit Comput

123

non-trivial problem and there are several strategies for

addressing it. One is to have the ensemble run a distributed

structural simulation to test the safety of each movement

before it is executed. Simulating a structure in real time in

this manner would allow customization but could consume

system resources and slow reconfiguration. Other strategies

are to only allow transitions that have been simulated

beforehand to assess their safety (which would limit cus-

tomization), or to develop techniques for guaranteeing that

a particular control algorithm can never reach an unstable

configuration.

One example of distributed planning that produces sta-

ble structures is the stigmergic algorithms that guide wasp

swarms’ nest-building [19]. Each individual wasp follows

the same global set of rules—each rule describes a par-

ticular arrangement of cells adjacent to the empty cell

currently occupied by the wasp, and a type of cell to be

added in this circumstance. When a wasp sees that the local

structure of the nest matches one of the rules’ preconditions

it adds a new cell specified by that rule’s postcondition. As

wasps build up the nest, new conditions are created that

trigger other rules, coordinating the parallel activity of

many wasps without explicit communication. Certain

classes of rulesets (such as the rulesets for actual wasps’

nests) reliably produce structurally stable forms.

3.4.2 Reconfiguration speed

A critical aspect of a state transition is the amount of time it

takes to complete. The social table must be able to create

enough places for everyone to sit down before the food gets

cold. A disadvantage of wasps’ local rule-based algorithms

is that the wasps move randomly over the structure,

increasing the amount of time it takes to form. One strategy

for speeding up reconfiguration is to distribute information

about which areas of a structure are growing. In Stoy and

Nagpal’s gradient-based directed growth planner [17] an

ensemble of modules reconfigures into a goal shape by

having individual modules move around the surface until

they find a growing region and attach themselves there.

Unattached modules follow gradients broadcast by

attached modules adjacent to growing regions. By taking

advantage of local communication to propagate gradients,

this technique reduces the time required to reconfigure an

ensemble.

3.4.3 Surface turbulence

Some algorithms route modules along the surface of a

structure during transitions, while others route modules

internally until they reach areas that are growing or

shrinking. When transitions take place near people or

objects it can be desirable to limit surface turbulence. For

example, when the social table expands it is important that

modules do not collide with people’s legs under the table,

and it would be inconvenient for modules to crawl across

the surface of the table while people are eating.

DeRosa et al.’s Hole Motion Planner [13] reconfigures

an ensemble from an initial shape to a goal shape by

growing bubbles on expanding surfaces (Fig. 6) and then

propagating these voids through the center of the ensemble

until they reach a shrinking surface, where each void ‘pops’

leaving a small crater. Through the action of these voids

modules propagate through the center of the ensemble

towards expanding regions. This mechanism limits surface

turbulence to areas that are growing or shrinking.

3.4.4 Precompilation

Rather than distribute the desired goal state to each module

some algorithms compile local instructions based on the

goal state and then only distribute these instructions. This

style of algorithm has certain advantages such as mini-

mizing required communication, but it is poorly suited to

guiding transitions during customization as the goal state is

not known beforehand. In contrast, the Hole Motion

Planner requires no precompilation, making it suitable for

realizing customizations with the ‘sticky hands’ technique.

3.5 Summary

Hyperform implementers may not need to know the details

of individual hardware systems and reconfiguration algo-

rithms, but they must understand the tradeoffs between

different desirable characteristics of the underlying hard-

ware and algorithms. Familiarity with the properties of

self-reconfiguring materials can help tangible interaction

researchers in developing models and techniques for

Fig. 6 DeRosa et al.’s Hole Motion Planner creates bubbles on

expanding surfaces (left) and propagates the resulting void through

the center of the ensemble until it reaches a shrinking surface where it

pops, leaving a crater (right)

Pers Ubiquit Comput

123

interacting with hyperforms, and inform a discussion of

how to improve the design of these materials.

4 Affordances of ensembles of robotic modules

In the previous section, we discussed some ways that the

underlying hardware and software of a self-reconfiguring

material constrains the behavior of hyperforms. There we

focused specifically on a particular technology, self-rec-

onfiguring modular robotics. We step back now to examine

the different kinds of interaction that self-reconfiguring

materials potentially afford. The scope of relevant work is

broader, encompassing modular robotics as well as other

tangible interaction systems that are composed of groups of

modules.

Here, we outline a comprehensive framework to account

for the varieties of interaction affordances needed to

achieve scenarios like the one in Sect. 2. Our purpose is not

to provide a summary of related work, but to illustrate our

framework with a few well-known examples. By describ-

ing the breadth of affordances available to hyperforms, we

aim to foster discussion of which would be most useful in

the modules of self-reconfiguring materials.

Our framework identifies three complementary pairs of

input/output interactions. The first two pairs concern

interactions with the external geometry of a hyperform; the

third concerns interaction with a hyperform’s internal state.

The interaction affordances are:

placing adding, moving or removing modules to alter a

form’s shape; and

self-reconfiguring actuating a form to shuffle modules

around to alter its shape; and

posing bending, squeezing or stretching a form to alter

its shape; and

self-posing actuating a form to bend and stretch to alter

its shape; and

commanding issuing symbolic instructions to a form to

alter its behavior; and

signalling displaying symbolic information with mod-

ules to indicate internal state.

Figure 7 illustrates the three input modes of our inter-

action categories: placing, posing, and command.

No single system that we know of features all six cate-

gories of affordances in our framework. Many tangible

interfaces today are limited to either input or output only. In

the future useful implementations of self-reconfiguring

materials may feature only a subset of these affordances.

However, there is an advantage to tangible modeling

interfaces providing complementary input and output

modes; supporting both modes of a pair promotes bidirec-

tional communication between the system and a designer.

4.1 Placing and self-reconfiguring

Placing and self-reconfiguring both facilitate transforming

a structure into a new shape. A simple example of placing

as input is stacking ordinary wooden blocks or plastic

bricks to build a 3D form. The canonical example of self-

reconfiguring as output is a set of blocks that can recon-

figure itself into a previously demonstrated 3D form. These

two interaction modes are fundamental to specifying and

realizing hyperforms.

In systems supporting bidirectional reconfiguration,

modules can be arranged either through manual placement

or self-reconfiguration. Most systems that support self-

reconfiguration can already sense the ensemble’s current

shape. All that is required for a self-reconfiguring module

to also support input by placing is an interface to manually

trigger connecting to and disconnecting from its neigh-

bors. However, we are unaware of any system that fully

supports both input by placing and output by self-

reconfiguration.

4.1.1 Input by placing

For a hyperform to support input by placing, a user must

be able to remove modules from an ensemble and place

them somewhere else; and the modules must be instru-

mented to detect their relative position and determine

the ensemble’s new shape. For example, in Fig. 7a

modules placed on the surface of the social table

hyperform define a serving platform. It is relatively

straightforward to build modules that afford input by

placing: Each module must be able to mechanically latch

to its neighbors and communicate through a data link to

identify itself.

One tangible interface that supports input by placing is

MERL’s self-describing building blocks [1]. They are

Lego-like blocks, instrumented to communicate the

geometry of a model to applications running on a personal

computer. Each block has a male connector on top and a

female connector on the bottom, just like a Lego brick

except that the pins and sockets also form electrical con-

nections. One example application generates geometry for

a first-person-shooter game; reconfiguring the blocks

changes the layout of the game.

Other tangible interaction projects also support input by

placing. They employ various hardware technologies. Ac-

tiveCubes [20] and roBlocks [15] have magnetic latches

with electrical connectors on all six faces of cubes; Glume

[11] models shapes with sticky blobs that communicate

with neighbors using a capacitive connection; Senspectra’s

[7] hubs and struts connect with headphone jacks; and

Posey’s [21] hubs and struts feature optocoupled ball-and-

socket connectors [23].

Pers Ubiquit Comput

123

4.1.2 Output by self-reconfiguration

The complement of input by placing is output by self-

reconfiguration. Self-reconfiguration, the most technically

challenging aspect of realizing hyperforms, requires mod-

ules to coordinate with their neighbors to arrange an

ensemble into different shapes. It has largely been the

province of modular robotics systems; we are unaware of

tangible interaction work that has attempted self-reconfig-

uration. As discussed in Sect. 3, modular robotics systems

such as ATRON [5] and our prismatic cubes [24] coordi-

nate to move modules between nearby cells of a lattice.

Each system operates under particular constraints due to its

reconfiguration mechanism and corresponding control

abstractions. For example, only a few prismatic cubes are

needed to coordinate to move laterally, but six modules

must coordinate to move around a convex corner [24].

Although it is difficult to implement, this is the defining

affordance of a self-reconfiguring material.

4.2 Posing and self-posing

Whereas the input and output modes of placing and self-

configuring facilitate constructing new shapes, posing and

self-posing facilitate adjusting an existing shape. A tangi-

ble interface that affords posing can sense when a form is

bent, stretched, twisted or otherwise deformed. Modules

with actuated degrees of freedom can self-pose. Posing and

self-posing allow minor adjustments to the geometry of

form and can express motion.

To support posing, the individual modules must either

have sufficient degrees of freedom to move fluidly, or they

must coordinate with nearby modules to deform the

ensemble’s geometry. MERL’s Lego-style bricks men-

tioned above cannot be posed at all; they can only be

placed. Below we describe several articulated systems with

hinges or sockets that afford posing or self-posing or both.

4.2.1 Input by posing

Input by posing does not entirely change the shape of an

ensemble but merely alters its posture. Modules that sense

how the geometry of a structure is bent, squeezed or

twisted support input by posing; each poseable degree of

freedom must be sensed. Many tangible interaction projects

support some form of posing. For example, the Monkey [4]

is a poseable humanoid doll designed to help professional

special-effects artists animate computer graphics charac-

ters. Each of its one-dimensional rotational joints is

instrumented with a potentiometer to detect the current

joint rotation.

Our own Posey’s [21] hubs and struts connect with ball-

and-socket joints. Arrays of optocoupled infrared emitters

and sensors embedded in each ball-and-socket detect the

identity of neighboring modules as well as the roll, pitch

and yaw of each connection. This instrumentation supports

input both by placing and posing. For example, with Po-

sey’s Puppet Show application you first build the skeleton

of a creature by placing the hubs and struts of the Posey kit,

and it appears onscreen. You then skin this skeleton with an

onscreen interface to create a puppet; and you animate the

puppet on the screen by posing the model. This general

interaction style of indicating basic three-dimensional

forms and behaviors with a tangible interface, then speci-

fying further details through an onscreen interface, is a

promising model for hyperform specification tools.

4.2.2 Output by self-posing

In self-posing an ensemble moves under its own power; a

quadruped walks across the floor; a chair stretches to raise

a child to the height of a table. An ensemble retains its

current form and actuates some portion of it. Providing this

output affordance is less challenging than providing full

self-reconfiguration; nonetheless it can support a wide

variety of useful devices.

4.2.3 Bidirectional posing

As with placing and self-reconfiguring, a significant payoff

comes when a single device combines both the posing and

self-posing input and output modes. Modules that thus

afford bidirectional posing can sense being bent, stretched

or squeezed and then perform the demonstrated deforma-

tion. For example the well-known Topobo toy’s [12]

‘active’ modules have poseable sockets with one rotational

degree of freedom. Each socket has both a sensor to detect

current rotation and a motor to actuate to new rotations.

(a) (b) (c)

Fig. 7 Three types of input that

modules of a self-reconfiguring

material afford. a Forming a

raised platform by placing

modules. b Posing a platform

with the sticky hands technique.

c Creating a basin with a double

fist gesture command

Pers Ubiquit Comput

123

Pressing a button on an active module puts it into ‘record

mode’: wiggling the creature’s legs and torso programs a

gait. Then, pressing the button again switches Topobo to

‘play’ mode and Topobo replays the motion that was just

demonstrated.

Another instance of a system that supports bidirectional

posing is CKbot [27], an updated version of Polybot

composed of actuated elbow joint modules with three

connectors on each side. CKbot is intended to support the

construction of useful robots and as with Topobo, robots

built with CKbot can be posed to demonstrate gaits. Going

beyond Topobo, CKbot captures the full geometry of a

robot and communicates its configuration and pose to an

onscreen gait programming environment. As a robot is

built with CKbot modules the onscreen interface displays

the robot’s current configuration. Keyframes are defined by

posing the robot, and then can be shuffled and edited. The

resulting gait definition runs on the physical robot and can

be further refined. It illustrates the dual utility of self-

posing: first as a display during the prototyping stage; and

then as a means to accomplish tasks during the use stage.

4.2.4 Lattice posing

Both examples (Topobo and CKbot) are articulated struc-

tures, but lattice structures can also support posing and self-

posing. In the context of a lattice structure, posing could

allow a form to be stretched and molded. With the ‘sticky

hands’ technique discussed above, surfaces of a form can

be grabbed and then stretched or squeezed.2 For example

Fig. 7b shows the top surface of a platform being stretched

upwards.

In a lattice structure, posing can also demonstrate

movement. For example, the speed of the serving platform

could be adjusted with a double-sticky-hands gesture by

placing one hand on each side of the platform and sliding it

forward to demonstrate the desired speed.

4.3 Commanding and signalling

The previous two input/output pairs—placing and self-

reconfiguring, posing and self-posing—are means to

interact with a hyperform’s external geometry. To control

the behavior of a hyperform through time, it can also be

helpful to interact with its internal state. The third input/

output pair concerns this interaction. For example, Top-

obo’s command interface is composed of a single button

that cycles through three internal states—off (for building),

record, and play—and to signal the current state Topobo

lights a multicolor LED.

4.3.1 Command interfaces

Commands that can be delivered to the modules of a dis-

tributed system are of two types: global commands

broadcast to all modules at once, or local commands sent

directly to one or a few neighboring modules. In Topobo,

on each ‘active’ module a local command button cycles the

module through its three states. However, we often want to

think of an entire Topobo creature as being in a single

global state. To achieve this effect, Topobo comes with

cables to connect all the active modules together, so that

button commands received on one module are broadcast

across the system.

There are several ways to issue a command to a system.

A button is sufficient for simple local commands—more

sophisticated sensors installed in each module can support

different styles of local commands. For example each tile

of the Siftables kit [9] detects gesture commands with an

embedded accelerometer. Modules with cameras could

capture, recognize, and interpret hand gestures; custom

gestures could be recorded and associated with commands

such as the double fist gesture for indicating the ‘basin’

command illustrated in Fig. 7c.

A remote control such as an application running on a

cell phone could broadcast commands to an entire sys-

tem—the phone interface might serve as a magic wand

that, pointed at a furniture hyperform, would turn it into a

table, couch or bed. Voice recognition could allow spoken

commands to be quickly and intuitively broadcast

throughout a system.

4.3.2 Signalling interfaces

A signal allows a module to communicate its internal state.

A simple signal is a multicolor LED that indicates a small

number of states. This could be used to indicate, for

example, a surface that is currently ‘grabbed’ with sticky

hands. To send more complex signals, modules could

incorporate full-color screens as do the Siftables tiles [9].

4.4 Summary

We presented a framework of three pairs of input/output

affordances. To realize hyperforms, a hardware module

need not provide all these affordances. A subset of these

affordances can combine to realize a variety of behaviors.

For example Topobo [12] does not afford placing or self-

reconfiguring, and only some, ‘active’, modules contain

electronics. Its only degrees of freedom are the rotational

joints of the active modules, so Topobo can sense

2 Although the sticky hands gesture could be seen as signalling a

command, it is useful to distinguish posing gestures used to directly

manipulate the geometry of a structure from more abstract signalling

gestures used to trigger arbitrary behaviors.

Pers Ubiquit Comput

123

whichever part of the model is manipulated and reproduce

the motion. Another example is a self-balancing table [28]

with legs composed of simple chain-style modules (similar

to Polybot [25] without self-reconfiguration). The table can

be placed on an uneven surface or in someone’s lap, and

through a distributed algorithm the modules that make up

the legs coordinate to keep the surface of the table level.

However, to realize a self-reconfiguring material a system

must at a minimum afford self-reconfiguration.

5 Supporting hyperform interaction

with the prismatic cubes

So far we have sketched a speculative scenario of hyper-

form use, considered a life cycle model for hyperform

specification, examined how the underlying hardware and

software constrain hyperform behavior, and outlined a

framework for tangible interaction with hyperforms. In this

section, we ground this discussion in a particular imple-

mentation of a lattice style system that we have been

working on, the prismatic cubes.

Modular robotics research has largely been concerned

with demonstrating self-reconfiguration: our prismatic

cubes have demonstrated the low-level transitions that

could support self-reconfiguration on a handful of modules;

and other hardware systems [5, 10] have demonstrated self-

reconfiguration on somewhat larger ensembles. Below we

briefly describe our current implementation of the pris-

matic cubes hardware (for more detail see [24]). Then, we

discuss features we could add to this system to better

support hyperform interaction.

5.1 Prismatic cubes implementation

To support self-reconfiguration with the prismatic cubes,

we have focused on structural robustness and simplicity of

control. Ensembles of prismatic cubes achieve structural

robustness through their close-packed cubic lattice and the

powerful intermodule bond provided by their electrostatic

latch [6]. To simplify control, we designed modules to

dock passively and attempted to minimize the number of

modules that need to coordinate to implement the cubes’

control abstraction, movement primitives.

5.1.1 Hardware design

For our prismatic cubes, we have chosen a module size

amenable to rendering interactive furniture as outlined in

our scenario above; each is roughly the size of a brick. We

adopt the morphology pioneered by the Crystalline Atom

[14] and the Telecube [18]; each face of a cubic module

can extend independently and latch to a neighboring

module (Fig. 8). With faces closed the modules stack in a

cubic lattice 125 mm on center. By coordinating with its

neighbors, a module can move itself one space over in this

lattice as discussed in Sect. 3—see Fig. 3b

Each face is outfitted with an electrostatic latch [6] made

of a mylar-wrapped extruded comb that can be charged

with static electricity. When two faces mate the combs

interlace, guided by a passive alignment mechanism. Once

charged, strong electrostatic forces keep them latched

(without additional power) until the electrostatic charge is

drained.

In most situations the combination of the dimensional

constraints of the cubic lattice and the passive self-align-

ment built into our electrostatic latches suffice to guide

docking with no explicit planning beyond extending two

neighboring faces.

An essential aspect of self-reconfiguration is moving a

module from one location to another. Independently actu-

ating each face of the prismatic cubes makes the individual

modules more complex but it allows modules to slide in

any direction by coordinating with only a few neighbors.

5.1.2 Control abstraction

The low-level details of coordinating a group of modules to

unlatch, actuate and then relatch in order to move a module

into a neighboring lattice cell can be complex. To simplify

planning, instructions are often given in terms of a control

abstraction that specifies an atomic movement of a small

group of modules to a nearby location. We created move-

ment primitives [24] as an abstraction layer for the pris-

matic cubes. Each module can choose when to trigger a

movement primitive that maps the current local geometry

to a new geometry.

Fig. 8 Current prototype prismatic cube module showing core and

six latch faces

Pers Ubiquit Comput

123

Moving the prismatic cubes vertically or horizontally is

fairly straightforward; the most difficult transition to

accomplish with this morphology is moving around a

convex corner. The round movement primitive (Fig. 5c)

does this using twelve modules. Executing this primitive

places the most strain on the hardware; as shown in Fig. 9

it requires one module to hold two others cantilevered at a

distance of one cell.

Our prismatic cube movement primitives lend them-

selves to planning methods such as the Hole Motion

Planner [13] that transition through the interior of an

ensemble, an important feature for practical transitions in

spaces shared with objects and people.

5.2 Future work in supporting hyperform interaction

To allow us to experiment with different modes of tangible

and gestural interaction, each face of the prismatic cubes

has an expansion bay for a daughter board. Here, we dis-

cuss some different sensors and actuators we could include

on an expansion board and the modes of interaction they

would support.

5.2.1 Intermodule communication

One feature we are including on the expansion board is

intermodule communication. While needed for self-recon-

figuration, some implementations could also be useful for

supporting tangible interaction. Two leading contenders are

infrared transceivers and electrical spring probes. Spring

probes detect when latches are fully engaged, while

infrared transceivers can be tuned to communicate with

neighboring modules before latching.

5.2.2 Face coloring

We would like to control the color of individual faces. This

could be accomplished with diffuse multicolor LEDs or

electrochromic paint (that changes color when a charge is

applied). Faces could use color to indicate a change in

state, for example when a surface is selected with the

‘sticky hands’ technique (Fig. 7b). Or each module in a

surface could serve as a pixel to create a low-resolution

screen.

5.2.3 Grasp detection

We would like to detect when a cube is grasped, for

example to initiate ‘placing mode’ as shown in Fig. 7a.

This could be implemented in several ways: a simple but

inelegant solution would provide a button on each face that

you press to ‘‘grasp’’ a module. A more elegant solution

would detect (with capacitive sensing) when the comb of a

face is touched. If a camera or distance sensor is already

included for gesture sensing it could also be used to detect

grasping; however with a distance sensor it could be dif-

ficult to distinguish a hand from a foreign object.

5.2.4 Latch engagement

When a module is manually placed next to a new module,

we would like to detect when the latches are fully engaged

and then actuate them to hold the module in place. A spring

probe communication link could do this. Or a simple limit

switch could detect when another face touches it. Alter-

natively, a distance sensor together with infrared commu-

nication would enable modules to detect each other even if

(a)

(b)

Fig. 9 The round motion primitive moves two modules around a convex corner; it places the most strain on the hardware [24]. a Diagram of

round primitive actuation. b Round primitive being executed on hardware

Pers Ubiquit Comput

123

they were only nearby, and could then actuate to fully

engage.

5.3 Ensemble surfaces

The prismatic cubes’ form is well suited for tangible spatial

modeling; the hand-sized blocks can be stacked manually

or can respond to tangible and gestural input to self-

reconfigure. However, a limitation of our cube hardware

(as well as other hardware systems) is the quality of the

surface of an ensemble; the surfaces of most current sys-

tems are dominated by latching mechanisms. The faces of

the current cube prototype do not offer a particularly

appealing surface for sitting or laying (see Fig. 8). To

realize furniture and structures, there are a variety of sur-

face properties that would be desirable, e.g., softness (for

sitting or laying), a watertight seal (for tables and basins

and roofs) and smoothness (for tables and counters). Future

hardware modules could feature more discreet latching

systems that allow greater control over surface properties,

or ensembles could feature specialized skin modules that

provide desirable surface properties.

6 Scenario illustrating hardware implementation

In Sect. 2, we envisioned a ‘social table’ hyperform to

illustrate the life cycle of objects constructed with self-

reconfiguring materials. Then in Sect. 5, we discussed how

our prismatic cube modules could be adapted to support

hyperforms. Here, to illustrate how the choice of hardware

system affects hyperforms, we envision a second, simpler

scenario; a couch that turns into a bed when someone lays

down on it, and then back into a couch when there is no

longer anyone laying on it. We describe this scenario in the

terminology developed above. Then, we examine in more

detail how several behaviors described in this scenario

could be implemented with the improved prismatic cubes,

illustrating how the choice of hardware system could

support desirable behaviors and thus inform system design.

6.1 Fold-out couch hyperform

The hyperform implementer begins to design the fold-out

couch hyperform by selecting an abstract couch routine at

her hyperform workbench; material climbs out of the res-

ervoir to realize a basic couch on the work surface on the

floor next to her. She adjusts parameters on the screen to

modify the ‘couch’ state, and then creates a new ‘bed’ state

and puts the ensemble into free modeling mode to shape

the bed. With a combination of posing and command

gestures she widens the seat to make enough room to sleep,

pulls the arms up into a headboard and footboard, and

squashes down the back of the couch. To get the top edge

of the headboard just right, she adjusts several individual

modules by grasping and placing them.

Once satisfied with the shape of both the couch and bed

she selects both states on the screen and adds a transition

from the couch to the bed. She selects a posture identifi-

cation routine from a sensor library (built by a hyperform

scripter) that determines whether a person is laying, sitting

or standing anywhere on the structure; when a person’s

posture changes the routine generates events. She sets the

’laying on’ event to trigger the transition. She adds a

transition from the bed state back to the couch and sets it to

trigger when there is no longer anyone laying on the bed.

She selects the couch-to-bed transition on the screen and

opens the customization interface. She selects minimizing

surface turbulence as the most important consideration

(there is someone laying on the ensemble!). The system

selects a distributed planning algorithm to attempt to sat-

isfy this requirement and shows a simulation of the tran-

sition under that planner on the screen.

To further protect the person occupying the hyperform

during reconfiguration, she applies a library routine that

restricts module movement near people. The routine tracks

the position of the occupant and routes transitioning

modules around a constraint envelope.

To test the behavior she has just developed, our imple-

menter now lays down on the couch. The posture detection

routine senses this and triggers the transition to the couch

state. The distributed planner identifies areas of the struc-

ture that need to grow and routes modules from areas that

need to shrink; as more modules are needed they are drawn

from the reservoir. As the back of the couch begins to melt

away a tower of modules under her arm blinks bright

yellow; where her arm is laying across the back of the

couch the modules are forbidden to move by the ‘occupant

constraint envelope’ routine. Once she repositions her arm

the transition completes. Satisfied, she applies an alarm

routine that will gently shake the occupant awake after a

short nap.

6.2 Implementation scenarios

We now describe how several of the hyperform behaviors

described above could be realized.

6.2.1 Implementation of placing

To adjust the details of the headboard, the hyperform

implementer adjusts the position of individual modules by

manually placing them. To allow our prismatic cubes to be

placed as illustrated earlier in Fig. 7a, each face would

feature an infrared transceiver to communicate with

neighbors and a sensor to trigger a ‘placing mode’ when a

Pers Ubiquit Comput

123

cube is grasped—the module disconnects from its neigh-

bors and retracts its faces so that it can be manually

removed from the ensemble. The (now retracted) faces of

the grasped module also turn red to indicate that the

module is in placing mode. When the module is placed

near a new position it communicates with its potential new

neighbors over infrared; valid nearby positions are indi-

cated by turning those faces red also. As shown in Fig. 10,

faces adjacent to a valid position retract to allow the cube

to be placed. Once inserted the cube latches to neighboring

cubes and leaves placing mode, returning all the cubes’

faces to their default colors.

6.2.2 Implementation of sticky hands

To reshape one arm of the couch form into a headboard, the

hyperform implementer uses posing gestures such as

‘sticky hands’. She holds one hand over the top surface of

the arm until it turns red (to indicate it is selected) and pulls

it up to establish the height of the headboard. She then uses

a few other command and posing gestures to establish a

plane of symmetry and further mold the shape. To realize

the ‘sticky hands’ behavior (Fig. 7b), each cube’s face

would be equipped with a distance sensor to sense that a

hand is being held nearby. As above, with placing, a spe-

cialized distributed algorithm colors other modules in the

same surface red. These then actuate in parallel to move the

surface to follow her hand.

The modules in the selected surface recruit the next

layer of modules beneath them (marked A in Fig. 11) to

participate in raising and lowering the surface. As the

surface is raised or lowered further a planning algorithm

such as the Hole Motion Planner [13] grows or shrinks the

area beneath the surface so that the surface boils upward to

follow, and craters downward as it is pushed back.

6.2.3 Implementation of gesture commands

One tricky aspect of hyperform interactions that we have

only hinted at is the question of how to explicitly control

transitions. For example, although the couch described here

only responds to changes in the environment (someone

laying on it), we suggest in Sect. 2 that when a drink is

spilled on the table a ‘double fist’ gesture could command

the table to explicitly form a basin to contain the mess. To

trigger this style of command, we must both select a

desired behavior and indicate where it should happen.

Hand gestures are a sort of ‘command line’ for tangible

interaction: a minimal and powerful interface, which

however requires you to commit commands to memory.

Another possibility is that a handheld device (such as a cell

phone) could present a menu of possible behaviors, and

then be pointed to indicate a site of operation.

6.2.4 Implementation of reconfiguration near people

This scenario highlights a complication of hyperform fur-

niture—the need to protect the safety of nearby people.

One aspect is assuring that structures are statically stable

and will not collapse or overturn, even as they reconfigure;

another is assuring that moving modules do not strike or

pinch nearby people.

Figure 12 shows a diagram illustrating the cross-section

of the couch hyperform during transition. A constraint

envelope surrounds the occupant and prevents any imme-

diately adjacent modules from moving. The profiles of the

couch and bed are shown in dotted lines, and the cube

modules are moving to vacate the back of the couch (on the

left) and fill in the extended profile of the bed (to the right).

However, the person laying on the couch has thrown her

arm over the back of the couch, preventing a column of

modules from moving away.

An initial strategy to resolve conflicts between people

and modules that are attempting to move is to blink the

modules to indicate that they are stuck (marked S), and

then wait for the person to move out of the way.

An advantage of the prismatic cubes is that they can

transfer through the center of a lattice. However, structures

could be destabilized by this internal reconfiguration. For

Fig. 10 A prismatic cube in placing mode being inserted into a

lattice

Fig. 11 Modules beneath top layer (marked with an A) recruited to

maintain ‘sticking distance’ with hand held over top surface of

serving platform

Pers Ubiquit Comput

123

example, the module directly under the person in the

middle of reconfiguring (marked D) is potentially desta-

bilizing the structure by abandoning the load-bearing

module overhead. A challenge is to model the loads on a

structure from nearby people even during reconfiguration.

6.3 Summary

With current modular robotics systems and tangible inter-

action techniques, we can begin to think about realizing

some of the most basic hyperform behaviors. Directly

placing modules is within reach, and a somewhat fragile

version of sticky hands could be realized on our current

prismatic cubes hardware. Transitioning ensembles

between shapes such as the couch and bed states described

above is still limited to simulation due to the difficulty and

expense of making that many modules. Even with a suffi-

cient number of modules, much more work on control

algorithms is necessary before it would be safe to sit on a

couch hyperform.

7 Discussion and future work

We have presented a vision of a technology that could

revolutionize the ways we create and interact with the

objects that comprise our built environment. Self-recon-

figuring materials such as a more advanced and refined

version of our prismatic cubes could disrupt the current

manufacturing cycle by digitizing the distribution of

objects and including a larger swath of society in the design

process. The challenges of interacting with and designing

hyperforms present a radical ubiquitous computing

research program in which our everyday objects are com-

posed of tiny robots and our primary mode of interaction

with them is through tangible and gestural interfaces. In

surveying technologies that could support this vision, and

presenting scenarios illustrating how they could be com-

bined to realize hyperforms, we have attempted to outline

the space of this project. Here, we first suggest some

directions for future research toward self-reconfiguring

materials. Then, we suggest some opportunities for the

tangible interaction community to inform these next steps.

7.1 Next steps toward self-reconfiguring materials

Although great progress has been made toward functional

self-reconfiguring materials, challenges remain to be

overcome. Below we suggest some next steps that could be

taken. Four areas that merit particular attention are manu-

facturing, planning, sensing and verification.

7.1.1 Manufacturing

We are beginning to be able to build modules capable of

self-reconfiguring; yet it is still laborious and expensive to

produce them in quantity. This impedes our ability to

produce ensembles to serve as testbeds for further devel-

opment. Developing modules optimized for inexpensive

manufacture could improve this situation.

7.1.2 Planning

Although attempts to realize distributed planners that can

arrange an ensemble into a shape specified by a 3D model

have met with some success, full 3D models are an

impoverished format for representing individual states.

More work needs to be done to establish planning algo-

rithms to transition between states defined in terms of

constraints and parameters, as well as algorithms to define

dynamic states.

7.1.3 Sensing

To operate safely among us, hyperforms will need to sense

both people and objects and distinguish between the two.

Possibilities include arrays of infrared sensors to cameras

embedded in each module, as well as more exotic solutions

such as identifying people by smell in order to avoid

encroaching.

7.1.4 Verification

A particularly important area of research is to be able to

predict how these complex systems will behave, and to

Fig. 12 Cross-section of a hyperform as it transitions from couch to

bed. Modules marked C are constrained to stay where they are as they

fall within the constraint envelope surrounding the person. Modules

marked S need to move but are stuck as they also fall within the

constraint envelope. Modules marked D and R are currently moving

to reconfigure into the bed state

Pers Ubiquit Comput

123

verify that the behavior specified for a particular hyperform

will not put people in danger. These systems could range

from a simple distributed structural model running on a

hyperform to test the safety of potential reconfigurations on

the fly, to a sort of automated building code that would take

a hyperform specification file and test all possible behav-

iors to guarantee its safe performance.

7.2 Challenges for the tangible interaction community

The scenarios we have presented here are not intended as a

research program but as an invitation to the community to

consider this space. By engaging with the issues of how to

create and interact with hyperforms, the community can

help to guide the development of self-reconfiguring

materials.

One of the biggest obstacles to participating in devel-

oping methods for interacting with hyperforms is building

or acquiring self-reconfiguring materials. However, there

are several strategies for validating novel interaction

techniques without an ensemble of self-reconfiguring

hardware. To demonstrate the viability of interaction

techniques designed to work in a distributed fashion on

large ensembles, we can use computer simulations. It is not

necessary to implement self-reconfiguration to explore

methods of interacting with self-posing objects; as men-

tioned above both Topobo [12] and the self-balancing table

[28] explore novel modes of interacting with ensembles of

robotic modules. It is not necessary to implement any

electronics at all to explore the behavior of distributed

algorithms—by participating in the Human Hive [22] a

group of people execute the rules of a stigmergic algorithm

(each person has a card with a single rule) to build a large

hive structure. Below we consider some of the areas of

exploration that could inform the future development of

hyperforms.

7.2.1 The hyperform life cycle

Self-reconfiguring materials have the potential to com-

pletely revolutionize the way we create and acquire things.

There are many possibilities to explore in this space. It

could be that instead of having expert hyperform scripters

and hyperform implementers create specifications, all we

need is a simple construction interface and people will

design their own things and trade them with their friends in

a sort of physical embodiment of MySpace. Or it could be

that we are too optimistic about developing automated

safety-assurance routines for hyperforms; after a few

unfortunate mishaps people will only be willing to down-

load hyperforms from large and reputable brokers that

vouch for the safety of each hyperform specification (and

provide little opportunity for hazardous customizations).

7.2.2 Tangible spatial modeling

This is an area that has begun to be explored but still holds

a lot of potential. Is the ‘sticky hands’ technique suggested

here a good model for describing forms? Perhaps we will

not directly interact with self-reconfiguring materials, but

rather we will sketch forms in space with a stylus; we will

then fill these forms with a 3D ‘paint bucket’ tool that gives

us control of the material properties.

7.2.3 Hyperform command and control

Once we are able to create hyperforms, will it be worth the

trouble of interacting with them? There are many possible

models for triggering hyperforms to alter their behavior. We

could explicitly control changes in behavior with the analog

of a command line or a manual transmission for a car. Hy-

perform implementers could compete to provide empathetic

hyperforms: by sensing our emotional states these structures

could anticipate when to alter their behavior without our

having to ask. Or the objects surrounding us could become

sophisticated pets that we train from ‘‘puppies’’ to behave as

we would like, with varying degrees of success.

7.3 Our next steps

We are still working towards manufacturing enough of our

prismatic cubes to serve as a testbed for experimentation

with control software and interaction techniques. In par-

allel, we are considering distributed algorithms for sup-

porting tangible interaction with larger ensembles in

simulation. The first steps toward realizing hyperforms

have been taken, but there is a great deal of work to be

done before we will be eating at a social table.

Acknowledgments This research was supported in part by the

National Science Foundation under Grants ITR-0326054 and CNS-

0428738.

References

1. Anderson D, Frankel J, Marks J, Leigh D, Ryall K, Sullivan E,

Yedidia J (1999) Building virtual structures with physical blocks.

In: User interface software and technology (UIST). ACM,

pp 71–72

2. Butler Z, Kotay K, Rus D, Tomita K (2002) Generic decentral-

ized control for a class of self-reconfigurable robots. In: Inter-

national conference on robotics and automation (ICRA). IEEE,

pp 809–816

3. Christensen DJ, Østergaard EH, Lund HH (2004) Metamodule

control for the atron self-reconfigurable robotic system. In:

Intelligent autonomous systems (IAS), pp 685–692

4. Esposito C, Paley WB, Ong J (1995) Of mice and monkeys: a

specialized input device for virtual body animation. In: Sympo-

sium on interactive 3D graphics, pp 109–114

Pers Ubiquit Comput

123

5. Jorgensen MW, Østergaard EH, Lund HH (2004) Modular atron:

modules for a self-reconfigurable robot. In: Intelligent robots and

systems (IROS). IEEE, pp 2068–2073

6. Karagozler ME, Campbell JD, Fedder GK, Goldstein SC, Weller

MP, Yoon BW (2007) Electrostatic latching for inter-module

adhesion, power transfer, and communication in modular robots.

In: Intelligent robots and systems (IROS). IEEE, pp 2779–2786

7. LeClerc V, Parkes A, Ishii H (2007) Senspectra: a computa-

tionally augmented physical modeling toolkit for sensing and

visualization of structural strain. In: Human factors in computing

(CHI). ACM, pp 801–804

8. Lynch N, Segala R, Vaandrager F (2003) Hybrid I/O automata.

J Inf Computing 185(1):105–157

9. Merrill D, Kalanithi J, Maes P (2007) Siftables: towards sensor

network user interfaces. In: Tangible and embedded interaction

(TEI). ACM, pp 75–78

10. Murata S, Yoshida E, Kamimura A, Kurokawa H, Tomita K,

Kokaji S (2002) M-tran: self-reconfigurable modular robotic

system. Trans Mech 7(4):431–441

11. Parkes A, LeClerc V, Ishii H (2006) Glume: exploring materiality

in a soft augmented modular modeling system. In: Ext. abstracts

of human factors in computing (CHI). ACM, pp 1211–1216

12. Raffle H, Parkes A, Ishii H (2004) Topobo: a constructive

assembly system with kinetic memory. In: Human factors in

computing (CHI). ACM, pp 647–654

13. Rosa MD, Goldstein SC, Lee P, Campbell JD, Pillai P (2006)

Scalable shape sculpting via hole motion: motion planning in

lattice-constrained module robots. In: International conference on

robotics and automation (ICRA). IEEE, pp 1462–1468

14. Rus D, Vona M (2001) Crystalline robots: self-reconfiguration

with compressible unit modules. Autonomous Robots 10(1):107–

124

15. Schweikardt E, Gross MD (2006) roblocks: A robotic construc-

tion kit for mathematics and science education. In: International

conference on multimodal interfaces (ICMI). ACM, pp 72–75

16. Shneiderman B (1983) Direct manipulation: a step beyond pro-

gramming languages. Computer 16(8):57–69

17. Stoy K, Nagpal R (2004) Self-reconfiguration using directed

growth. In: Distributed autonomous robotic systems (DARS),

pp 1–10

18. Suh JW, Homans SB, Yim M (2002) Telecubes: mechanical

design of a module for self-reconfigurable robotics. In: Interna-

tional conference on robotics and automation (ICRA). IEEE,

pp 4095–4101

19. Theraulaz G, Bonabeau E (1995) Modelling the collective

building of complex architectures in social insects with lattice

swarms. J Theor Biol 177(4):381–400

20. Watanabe R, Itoh Y, Asai M, Kitamura Y, Kishino F, Kikuchi H

(2004) The soul of activecube—implementing a flexible, multi-

modal, three-dimensional spatial tangible interface. In: Advanced

computer entertainment technology (ACE). ACM, pp 173–180

21. Weller MP, Do EY-L, Gross MD (2008) Posey: instrumenting a

poseable hub and strut construction toy. In: Tangible and

embedded interaction (TEI). ACM, pp 39–46

22. Weller MP, Do EY-L, Gross MD (2009) Exploring architectural

robotics with the human hive. In: Creativity and cognition

(C&C), ACM (to appear)

23. Weller MP, Do EY-L, Gross MD (2009) An optocoupled pose-

able ball and socket joint for computationally enhanced con-

struction kits. In: Robot communication and coordination

(RoboComm). IEEE, pp 1–6

24. Weller MP, Kirby BT, Brown HB, Gross MD, Goldstein SC

(2009) Design of prismatic cube modules for convex corner

traversal in 3D. In: Intelligent robots and systems (IROS), IEEE

(to appear)

25. Yim M, Duff DG, Roufas KD (2000) Polybot: a modular re-

configurable robot. In: International conference on robotics and

automation (ICRA), pp 514–520

26. Yim M, Shen WM, Salemi B, Rus D, Moll M, Lipson H, Klavins

E, Chirikjian GS (2007) Modular self-reconfigurable robot sys-

tems. Robotics Automation 14(1):43–52

27. Yim M, Shirmohammadi B, Sastra J, Park M, Dugan M, Taylor C

(2007) Towards robotic self-reassembly after explosion. In:

Intelligent robots and systems (IROS). IEEE, pp 2767–2772

28. Yu CH, Willems FX, Ingber D, Nagpal R (2007) Self-organiza-

tion of environmentally-adaptive shapes on a modular robot. In:

Intelligent robots and systems (IROS). IEEE, pp 2353–2360

29. Zykov V, Mytilinaios E, Desnoyer M, Lipson H (2007) Evolved

and designed self-reproducing modular robotics. Trans Robotics

23(2):308–319

Pers Ubiquit Comput

123

	Hyperform specification: designing and interacting with self-reconfiguring materials
	Abstract
	Introduction
	A new kind of material
	Form in four dimensions
	A challenge for tangible interaction

	The hyperform life cycle: a scenario
	The composition of a hyperform
	Behaviors are defined as hybrid automata
	Stages of hyperform design: scripting, implementation, and use
	Scripting generic behaviors
	Implementing specific instances
	Use
	Customization

	Rethinking design

	Constraints of modular robotics
	Modular robotics as a self-reconfiguring material
	The composition of an ensemble of modular robots
	Constraints of hardware self-reconfiguration
	Constraints of distributed planning algorithms
	Structural stability
	Reconfiguration speed
	Surface turbulence
	Precompilation

	Summary

	Affordances of ensembles of robotic modules
	Placing and self-reconfiguring
	Input by placing
	Output by self-reconfiguration

	Posing and self-posing
	Input by posing
	Output by self-posing
	Bidirectional posing
	Lattice posing

	Commanding and signalling
	Command interfaces
	Signalling interfaces

	Summary

	Supporting hyperform interaction with the prismatic cubes
	Prismatic cubes implementation
	Hardware design
	Control abstraction

	Future work in supporting hyperform interaction
	Intermodule communication
	Face coloring
	Grasp detection
	Latch engagement

	Ensemble surfaces

	Scenario illustrating hardware implementation
	Fold-out couch hyperform
	Implementation scenarios
	Implementation of placing
	Implementation of sticky hands
	Implementation of gesture commands
	Implementation of reconfiguration near people

	Summary

	Discussion and future work
	Next steps toward self-reconfiguring materials
	Manufacturing
	Planning
	Sensing
	Verification

	Challenges for the tangible interaction community
	The hyperform life cycle
	Tangible spatial modeling
	Hyperform command and control

	Our next steps

	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

