Experiments in Design Synthesis when

Behavior is Determined by Shape

Eric Schweikardt

Cornell Computational Synthesis Lab
Department of Mechanical and Aerospace Engineering,

Cornell University
(+1) 303 517 4826

ees68@cornell.edu

Mark D. Gross

Computational Design Lab
School of Architecture

Carnegie Mellon University
(+1) 412 268 2767

mdgross@cmu.edu

Abstract

As we rapidly approach the day of transitive materials, made of individual elements that
sense and actuate and can be programmed and reprogrammed it is time to think about how
to design things using these new materials. Our roBlocks construction kit toy teaching
children about emergent behavior in complex systems serves as an example for investigating
the challenges of designing things made of transitive materials. The roBlocks kit comprises
heterogeneous modular robotics components that exhibit modularity, one-to-one mapping
between form and behavior, and non-hierarchical control; and these features make it
appropriate for experimenting with emergent behavior. However as the numbers of robotic
components scales to the orders of magnitude needed to consider them as material these
same features also make it difficult to apply traditional methods to design constructions with
desired behaviors. To understand this design space we built the Erstwhile Agent, which uses
an evolutionary approach to automatically synthesize roBlocks constructions to meet

specified desiderata.

Keywords programmable matter, evolutionary algorithms, material computing,

automated design synthesis



1. Introduction

Today we are on the threshold of having computational materials whose physical
properties are mutable, programmed by code that runs on units of the material to
produce —in aggregate—emergent behavior. Recently several research groups
have experimented with building and programming ensembles of modular robots
[1-6]. As work on modular robotics advances, yielding smaller more mechanically
sophisticated and more easily programmed units it will be appropriate to think of
the ensembles of robots as material, or “programmable matter.”

We have been working with a kit of modular robots that we designed as a
construction kit for children. We called our kit “roBlocks”: Our purpose was to
introduce young people to computational thinking and elementary robotics, without
requiring prior in-depth knowledge of electronics, mechanics, and programming. In
the spirit of constructionist learning [7-9], we intend that through this playful
activity children will acquire fundamental insights into how behavior emerges in
complex systems.

Our RoBlocks kit comprises many different kinds of modules, each with a predefined
behavior. Different sensors, actuators, and calculating functions are encapsulated
into individual physical blocks, and the behavior of a robot construction emerges
from the combination of local interactions between its modules. By snapping blocks
together, users simultaneously construct the physical robot and specify its behavior.

When form and behavior are tightly coupled like this we start to observe interesting
system properties. Certain kinds of configuration produce certain behaviors;
control algorithms take spatial form. And because control is distributed, when
hardware is removed from an ensemble of blocks, performance degrades gracefully.
However, users find that as they add modules to a construction, behavior becomes
more difficult to predict. As the blocks are cubes, each new module can have up to
six new connections, one on each face. With multiple, and often cyclic, data paths
traditional conditional instructions give way to complex, interlocked chains of
causality. The blocks are simple and easy to work with and capable of complex
emergent behavior but designing a construction to satisfy a specific non-trivial
requirement can be challenging.

We began to see our construction kit as more than a children’s toy. We began to see
it as a prototype for a programmable matter, in which objects and materials are
composed of large numbers of individual unit robots. Our experiences building
small roBlocks constructions led us to think about how one might design for this
new medium made of modular robots.

Intuition and conventional design expertise serves when working with small
constructions; but it is unlikely to scale up for constructions comprised of hundred
or thousands of modular robot units. The usual way to design large systems is by
constructing hierarchies of assemblies and subassemblies. However, the distributed
nature of control in roBlocks, and the way in which global behavior emerges from
local conditions, challenges the usual strategy of hierarchic design.

To understand how one might manage the complexity inherent in constructions
made of material like roBlocks, we therefore investigated strategies for automating
the design of roBlocks constructions. Specifically, we developed an evolutionary
algorithm to generate and test roBlocks constructions to produce desired behaviors.
We call this program the Erstwhile Agent. The Erstwhile Agent uses evolutionary



techniques to design and evaluate constructions that satisfy requirements set by a
user. We found that the Erstwhile Agent can produce successful designs.

In the following sections we report on our journey from building a children’s robot
construction kit toy to understanding this kit as a model for computational material,
and on our investigation of strategies for designing with this new material. In
section 2 we describe the roBlocks construction kit: the rationale behind it, the kit
itself, and children’s experiences working with the kit. Then in section 3 we describe
the Erstwhile Agent, an evolutionary algorithm for designing with roBlocks. The
Erstwhile Agent manipulates a software simulation of roBlocks to generate
constructions that meet requirements we specify in a fitness function. We present
results from our first experiments with the Erstwhile Agent. Based on these results
we reflect, in section 4, on the nature of designing with materials that consist of
large numbers of modular units whose characteristics are similar to roBlocks.

2. roBlocks — a Heterogeneous Modular Robot

Construction Kit

2.1 The roBlocks Kit

Our roBlocks construction toy consists of a variety of small (40 mm) plastic blocks
(see figure 1). Blocks snap together with magnets that are embedded in each face.
They pass power and data through the magnets and gold spring probes that are also
embedded in each face. The kit has three main kinds of blocks. Sensor blocks take
input from the physical environment, for example detecting light, sound, distance, or
motion. Action blocks act on the physical environment, producing light, sound, or
motion. Think blocks do not sense the environment or act on it, but operate on
information that the robot has taken in. In addition to sensor, action, and think
blocks, the kit also provides a battery block that powers a construction, and blocker
blocks that limit information flow. With a small complement of these blocks, a child
can build a construction that meets our definition of a robot: a machine that senses
its environment, operates on the information it has taken in, and acts to change the
state of the environment.

We were inspired by other efforts to build modular construction Kkits, for example
the Activecubes [10], self-describing building blocks [11], and McNerney’s tangible
programming bricks [12]. The design of roBlocks is subtly but importantly different
from these previous projects in that roBlocks embodies a local and distributed
computing model. Detailed descriptions of the design, implementation, and testing
of the roBlocks construction kit can be found in [13-17]

The roBlocks kit uses a simple diffusion model to pass data from block to block
within a construction. Each sensor block transduces information from its
environment into an integer from 0-255. A light-sensing block, for example,
generates a zero if it is in the dark, and 255 in the presence of bright light. A sensor
block continually passes its number value to all its neighboring blocks. The number
is wrapped in a packet that also includes its unique block identity (but not a
description of its particular type), a hop-count that reflects how far the packet has
travelled in the construction, and a timeout integer that decrements periodically to
prevent data from persisting in the system after a block is disconnected. When the
packet reaches an action block, the action block uses the hop-count to weight the



number value, and then it uses the weighted value to generate a signal. For example,
if an action block receives a number value of 255 with a weight of 1, it will light its
lamp at full brightness, or run its motor as fast as it can.

A roBlocks construction, then, consists of a set of blocks that are constantly passing
values around from block to block. The sensor blocks produce values, the action
blocks consume them, and the think blocks change values as they pass through. For
example, a minimum think block takes the smallest of the number values it receives
from its neighbors and it passes only that number along. A sum think block adds all
the number values it receives, and passes that along. As a packet travels from block
to block, its hop-count and timeout are decreased. This serves three functions.

First, a block that receives two packets from the same sensor origin that have
traveled different routes through the construction can determine which value
represents the shortest route and discard the other. Second, a block can
differentiate older sensor values from new ones. Even though the sensor value from
a moment ago (when the room was dark, for example, before the lights were turned
on) is still circulating throughout the system, the timeout value allows the block to
take only the most recent sensor data into account. Third, each action block uses the
hop-count in each packet it receives to weight the number value in that packet. The
farther away the originating Sensor block, the weaker its contribution to the action
block’s behavior.

With only a few blocks we can build interesting simple Braitenberg-like [18] robots.
For example, a light sensor block atop a tractor action block (with a battery block to
power it) moves toward or away from light. The light sensor produces a number
that the tractor block uses for speed control. If there is no light, the sensor produces
zero and the tractor remains still. If there is a lot of light, the sensor produces a high
value and the tractor motor runs fast. (Whether it goes toward or away from light
depends on the relative orientation of the light sensor and tractor action blocks.)

To extend this example, we can build two of these light-sensor, tractor-action towers
and connect them. The two towers act as before, each driving (say) toward light.
Now, though, if the light is on one side or the other, the connected robot will turn
away from the light because the light sensor closer to the light will drive its motor
faster than the motor on the darker side. This difference in motor speed causes the
robot to turn.

Figure 1. roBlocks is a heterogeneous modular robot construction kit. The white blocks are

‘action’ blocks, the black blocks are ‘sensor’ blocks, and the colored blocks are ‘think’ or



operator blocks. They snap together and transmit power and data through the magnets and

spring probes on their faces.

2.2 Playing and Learning with roBlocks

After we built a functional prototype of the roBlocks kit with several different kinds
of sensor and action blocks, we wanted to see whether children would find them as
interesting and provocative as we had planned. Atleast we wanted to see whether
(and at what age) children would be able to construct working robots. We also
wondered what they would understand about how an assembly of roBlocks works,
and whether they would grasp the properties of modularity and hierarchy that are
necessary to “think in roBlocks”.

We conducted a series of informal user studies with fifteen children with ages
ranging from 5 to 13 years. Eleven boys and four girls participated in our studies,
which took place at the children’s homes, at their school during lunch hour, or in one
case at their mother’s work place. We introduced the blocks and explained briefly
about sensor, action, and think blocks and how they worked together; we built a few
simple robots (see figure 2 for the simplest robot), and then allowed the children to
play freely with the blocks. We did not coach or try to get the children to accomplish
certain goals; however, when asked we answered specific questions.

mﬂ‘

Figure 2. The simplest robot: a twist sensor block (the black block with a knob on the right)

and a bar-graph action block. The gray block in back is a battery block.

All the children enjoyed playing with roBlocks and their undirected play sessions
with roBlocks lasted from twenty to forty-five minutes. Except for the five year old,
who mostly seemed to enjoy snapping the blocks together magnetically and pulling
them apart, all the children engaged with the ideas of sensors, actions, and
operators.

Children easily grasped the concept of modularity that is inherent in the design of
roBlocks. One seven-year-old observed that the bar graph block and the numeric
readout block were the same—that is, both Action blocks make visible the data they
receive. The same child later pointed out that “really, all the white [action] blocks
are the same”.

Children also built modular assemblies, or “meta-modules” that exhibit specific local
behaviors, and then combined these hierarchically to build larger robots. An eleven-
year-old built a small assembly of a distance sensor block, an inverter think block,



and a tractor action block. By itself, the assembly is a robot that slows down when it
approaches an object. She then used this assembly in various robots, including a
robot made of two of these meta-modules that approaches an object and then turns
away when it gets close.

Our play sessions with children were not intended to demonstrate that by using the
roBlocks kit to build robots, children learn specific mathematics or engineering
concepts. Although we believe that future testing will support this hypothesis we
merely wanted to see whether the kit would engage children in meaningful play, and
whether they could grasp the underlying themes of hierarchy and modularity that
are essential elements of the Kkit.

On one hand our play testing of roBlocks has encouraged us to proceed with
extending the kit of blocks, adding different kinds of sensor and action blocks, as
well as to produce the kits in larger numbers. On the other hand, even with small
numbers (6-10) of blocks in a construction children begin to encounter complex
behaviors that may be difficult to manage with larger constructions. These complex
behaviors arise because of the emergent and distributed nature of computation in
the roBlocks. We see this not as a flaw in the design of the kit, rather as an inherent
property of this class of heterogeneous modular programmable matter. This led us
to ask: What design strategies might be appropriate for materials made of large
numbers of heterogeneous modular robots? In the following sections we consider
this question.

3. Design Strategies for roBlocks Constructions

We turn now, away from the details of the roBlocks kit and our experience with
young users, to consider roBlocks as a model for material computing. We begin by
examining the specific material properties of our kit. We then describe a simulation
environment we built in order to experiment with automated design of roBlocks
constructions using an evolutionary design program, the Erstwhile Agent. We
report on our first experiences using the Erstwhile Agent to synthesize
constructions that meet specific desiderata.

3.1 Material Properties of the roBlocks Kit

Most obvious, when we consider roBlocks as a building material, is that at least in
their current size the blocks are fairly large. Apart from this, what properties of this
material affect the designs that can be made with them, and what design strategies
could be effective for large-scale configurations of roBlocks?

First, and most obvious, the blocks are modular; we have already alluded to this.
Their modularity is both physical and functional. Physically, all blocks are the same
size and shape, except for the special face on each sensor and action block—the
tractor treads, the photocell, the rangefinder, etc. All blocks also have the same
physical interface. They connect face-to-face, orientation does not matter, and every
connecting face is the same. There are no ‘male’ or ‘female’ faces. Functionally, the
blocks are also modular. All sensor blocks behave the same way, regardless of what
particular physical signal the block is designed to sense; and from the point of view
of the construction, action blocks are all the same as well—they transduce data into
physical effect. Only the think blocks are functionally different—and viewed from a
higher level of abstraction, they too, are all the same—they all operate on data.



A second property of the roBlocks kit is that it is heterogeneous. Although the kit is
modular, and therefore all the blocks are the same at one level of abstraction, there
are different types of blocks. By comparison, a material made of robots like
Goldstein’s Claytronics [1] would be homogeneous: the units are all identical.

A third property of the roBlocks kit is that functional behaviors are tightly coupled,
one-to-one, with physical elements of the kit. The tractor action block does only one
thing: it moves. The light sensor block does only one thing: it captures a light level
signal from the environment. This discrete matching of shape and behavior makes
each unit relatively simple—it only has to do one thing. This also requires the kit to
be heterogeneous, because more than one behavior is needed in order to accomplish
any interesting task.

A fourth property of roBlocks is that they propagate information locally throughout a
construction. A simple integer transmitted locally, from block to block through
adjacent faces is the only information used. Every sensor block is an information
source, and every action block is an information consumer. There is no hierarchic
command and control, nor is there message passing. Information is not directed at a
target, but simply suffuses across the construction.

Finally, roBlocks are concurrent; they operate autonomously and asynchronously;
there is no clock or central scheduler. Each block executes its own process,
operating on information it receives from its neighbors.

3.2 Simulating Behaviors of roBlocks Constructions

Even with small numbers of roBlocks we found we could build robots that exhibit
interesting behaviors. We wanted to see what it would be like to design and build
with large numbers of roBlocks. As we do not have large numbers of roBlocks, we
decided to build a simulator that we could use to experiment with designing and
testing larger scale constructions.

Our simulator is built in Microsoft Robotics Development Studio (MRDS) and it
simulates the basic physics of roBlocks as well as the way information flows through
aroBlocks construction. For example, simulated gravity makes unsupported blocks
fall and unbalanced constructions tip over; simulated magnetism snaps blocks
together and keeps them together. Sensor inputs travel from block to block in a
graph structure that is determined by the adjacencies of roBlocks, just as in the
physical kit.

We chose MRDS for its service-oriented architecture; its framework for managing
concurrency is ideal for experiments involving multiple robots. Each roBlockin a
simulated construction runs as an independent service, and they communicate
asynchronously in the same manner as the real world hardware system. Each
roBlock service is also paired with a simulation entity. The physics engine treats
each roBlock as a simple cube (with a mass that approximates a roBlock’s), but they
are rendered graphically using a triangular mesh and color-coded to match the real
world blocks. The roBlock entities in a construction attach to their neighbors by
breakable joints that simulate the magnetic connections between blocks. The joints
also serve as interfaces between the services: As in the real world system, physically
connected blocks also communicate computationally.

The various roBlock hardware types are simulated using a variety of techniques.
For example, the simulator approximates the behavior of distance sensor blocks by
casting rays in a narrow cone and determining collision points. Light sensor blocks



use the MRDS stock webcam component and average the pixel values of an acquired
image to calculate a brightness level. Tractor blocks use wheels to mimic the
mechanics of the physical system, and the Think blocks run the same C code that is
embedded in each roBlock’s microcontroller.

We verified the simulator by building roBlocks constructions and comparing their
performance in the simulator with their physical world counterparts. Once
convinced that we could rely on the simulator to accurately predict the behavior of
roBlocks in the physical world, we began to investigate strategies for automated
design.

3.3 the Erstwhile Agent: an Evolutionary Design System

The Erstwhile Agent (EA) is an evolutionary design system. Like all evolutionary
design systems, in an attempt to design a construction that satisfies requirements
set by a user it maintains a large set (population) of roBlocks constructions
(candidates) and operates on them over several iterations (generations). Each
candidate receives a single score (fitness) based on how well it performs on a
particular evaluation. The algorithm generates new candidates by combining
(mating) and randomly altering (mutating) strong candidates from the previous
generation. Sometimes a small number of highly-fit candidates live on (elitism) to
the next generation.

Many interesting automatic design systems have been built [19, 20]. Because of the
great variety in their purpose and implementation, it is helpful to discuss the
Erstwhile Agent through the four part framework of representation, generation,
evaluation, and guidance [21].

In contrast to the simulator’s 3D physical representation of a construction, the EA
represents each candidate roBlocks construction as a graph: a set of blocks and a set
of connection objects between those blocks. (Connection objects contain
information about which faces they connect and at what orientation.) Nothing in the
representation prevents the EA from creating and operating on constructions that
cannot be physically built (where two blocks would occupy the same space, for
instance, or constructions containing 3-block triangular cycles). We chose to allow
these impossible representations and later check whether a construction can be
built. We did this because the graph structure lends itself to crossover and grafting
operations more easily than, say, a three dimensional array that would also
represent the construction’s physical instantiation as blocks.

Also, instead of using a higher-level (i.e., genotype) language to describe the desired
features of a design, the representation of a construction is the phenotype itself.
Although this direct encoding may not easily give rise to appealing design outcomes
such as symmetry or self-similarity, building these operators into the representation
seems an overt attempt to manipulate the final designs.

From an initial population of random candidates, the EA generates offspring using
mating and mutation. Two parent candidates are mated using crossover: each graph
representation is broken along a branch and joined with a piece of the other,
creating two offspring. Infrequently, a candidate is mutated: a random block is
rotated, replaced by a block of a different type, or removed altogether.

Evaluating the performance of each construction is challenging. Although each
construction has some easily observable properties that can be assessed just by
parsing the representation (How many blocks does it contain? Are there any power

8



blocks?), the interesting properties of a construction are emergent. They are not
easily determined simply by examining the physical construction; we must run the
construction to see how it will behave. For example, if we require a safety-conscious
construction that beeps when it backs up, the best way to evaluate that criterion is
to move it in reverse and find out. With thousands of candidates in an evolutionary
run of thousands of generations, however, actually building each candidate
construction and testing it in the real world is impractical. Instead, the EA evaluates
constructions in simulation using the MRDS system described above. Relatively
inexpensive computing power enables us to run many simulations in parallel and in
accelerated time.

All our evaluations were specifically written tests that assign a fitness score to each
candidate. As we were trying to test the global, emergent behavior of parallel
systems like roBlocks, another service is created: a third-person evaluation service
that takes an omniscient perspective and evaluates the behavior of the entire
construction. In an attempt to design a construction that glows in the dark, for
instance, the EA instantiates an evaluation service that adjusts the light level in the
environment and monitors the glow level of the construction. This evaluator
watches each candidate construction and assigns it a fitness score that rates how
well it performs.

A challenge in designing with a concurrent material involves translating from a
distal to a proximal description [22]. The distal description (“glows in the dark”)
emerges based on the proximal description (the arrangement of modules in the
construction). Taking a third person perspective, the evaluation service tests each
proximal description against the distal description. We discuss some challenges in
creating these fitness functions in the discussion section below.

Testing in simulation gives the EA a third-person view of how the construction
interacts with its environment. Constructions that respond and react to their
surroundings are fully embodied [23]; the embedded sensors and actuators mean
that behavior makes sense only in relation to the environmental inputs that the
construction receives. Unlike pure software or other more abstract systems, the
behavior of computational-physical systems like roBlocks emerges from the ways a
construction interacts with its environment.

After the EA evaluates the entire population of a generation, the fitness score of the
individual candidates provides guidance to the algorithm as it creates the next
generation. Nature uses the process of natural selection: candidates sort things out
on their own, and the more successful ones (from nature’s point of view) generally
have more offspring. But unlike nature, the EA is teleological. We want a particular
outcome. So, like a dog breeder, we select the offspring that we like best to mate and
possibly mutate when creating the next generation. The EA uses stochastic
universal sampling [24] as a form of artificial selection where fitter candidates are
more likely to mate with others and carry their attributes into the next generation.

3.4 Some Evolutionary Runs

Our first attempts, like other efforts to evolve dynamic physical form [25, 26], aimed
at designing foraging robots, that is, constructions that move quickly. The
evolutionary runs were successful but unsurprising. As the only motorized action
blocks available to the simulation were tractor blocks, the best possible foraging
robot is a balanced construction with tractor block(s) on the bottom and a distance
sensor aligned to output a consistently high (near) value.



Some unsatisfying results arose because the vast majority of constructions do not
move at all; they receive a fitness score of zero. Many trials carried on for hundreds
of generations without marked improvement. Additionally, due to an oversight in
the evaluation framework several successful evolutionary “jumps” did not persist:
when two constructions mate, they do not necessarily both preserve their
orientation. The offspring of a successful construction with several tractor blocks,
for example, may end up “on its back” with its actuators pointed in the air instead of
down, rendering it unable to move. To address this shortcoming the EA could use a
more controlled mating process, but that might restrict its creativity. Alternatively,
each construction could be placed into the simulation and evaluated at each of the
six possible orientations.

In one set of experiments, we challenged the EA to design a roBlocks construction
that was somehow mindful of state. Without memory, roBlocks constructions are
purely behavior-based [27]; they process inputs and outputs in real time regardless
of previous experience. We hoped that the EA would manage to create a primitive
Turing machine, a construction that (for example) modified its surroundings in
order to keep track of state. Our simple evaluation function for this first queried
each actuator block for its current data value, then placed a large object in the scene.
The aim was to trigger any distance sensors that might be part of the simulated
construction. The evaluation function waited a few seconds, removed the object,
then queried the actuators again. Constructions with a larger difference between
the first and second queries were deemed to have ‘noticed’ and ‘remembered’ the
object’s presence in the scene; the evaluation function gave them a high fitness
value.

Figure 3. Screen captures from a video of a highly fit "stateful” candidate. It exploits the fitness
function by moving quickly to the right so that it is violently thrown when the large box is added
to the scene.

In response to this challenge, the EA designed a number of fit constructions. Its
designs were based on two different patterns: some constructions were very large,
and others immediately drove quickly to the right (see Figure 3). In both cases all or
part of the construction was located where the large object was added; the object
would collide with the construction and bounce it away. The displaced construction
would land at a different orientation; its originally down-pointing distance sensors,
which produced a high (near) value that would drive the robot quickly, would now
point away from the ground plane, reading a low (far) value. Although these results
did not represent the types of solutions we had hoped for, they do demonstrate the
power of evolutionary algorithms to create novel designs and exploit environmental
conditions to their benefit.

10



4. Discussion

4.1 The Limits of Simulation

Testing a material in simulation to determine its performance in the real world
raises its own set of potential problems. As materials with sensors and actuators are
so clearly embodied, their behavior in a simulated “blocks world” may differ
drastically from their behavior in, say, a classroom. Say we want a construction that
is flexible in the dark and becomes rigid when exposed to light. Given an
appropriate kit of parts, we might expect an evolutionary algorithm to design a
solution that fulfills our requirement, but quite possibly the solution will exploit
some feature of the simulation environment, as our “stateful” construction did.
Perhaps its light sensors are mounted on the bottom of the construction making it
dependent on a ground plane with high reflectivity. It will fail in a carpeted room.
Can we get around these problems by expanding our evaluation to test each
candidate in a variety of different simulation environments? How, then, to structure
those environments and testing?

4.2 Modularity and Hierarchy

The world is filled with complex systems. Human designers, whether of buildings,
businesses, or products, have developed methods to manage complexity that don’t
rely on explicitly evolutionary methods. When these types of complex systems
become unwieldy, designers manage by using modularity and hierarchy. When
software designers, for example, create functions and objects, they are building
reusable modules with a simple, specific interface to the rest of the system. Ata
higher level, database or user-interface modules may be separate from backend
transaction processing so that they can be modified independently; a clearly
specified interface between modules allows a designer to modify one part of a
system without keeping the whole system in mind. Governments, another example
of a complex system, show hierarchy along with modularity. Its branching tree
structure allows a single entity to effectively be “in charge” of a vast number of other
entities without managing each of those entities directly. We’ve seen young children
(unprompted) successfully use modularity and hierarchy to manage their roBlocks
constructions. Using these techniques with a discrete, highly connected material
could lead to interesting outcomes.

In a system like roBlocks, where the form of a construction determines its behavior,
constructions based on modularity and hierarchy express those organizing
principles in their physical form. In Figure 4, the construction on the left is
organized into two meta-modules. Each meta-module functions in relative isolation;
their only communication is through the single-block-wide “bridge”. The
construction on the right of Figure 4 is hierarchical. Its various parts combine in
prescribed ways, handling interaction between parts locally and then passing a
calculated output down the chain to the next part.

11



Figure 4. Constructions that express modularity (left) and hierarchy (right) in both their

behavioral programming and their physical shape.

The point of these simple examples is that standard techniques for managing
complexity now create highly salient features in the form of a construction, which
may or may not be a good thing. The modularity construction, on the left of Figure 4
might behave drastically differently if we only made the interface (the bridge) two
blocks wide instead of one. More data would be passed and more dependencies
would be created. Physically, the construction would be less likely to fall apart. In
roBlocks, there are ways to manage these issues (by using “Blocker” blocks that do
not transmit data, for instance), but these solutions are not universal to all discrete
materials.

A great difficulty with discrete materials is that designers must simultaneously
reconcile the shape and behavior of a construction. Traditional systems, by contrast,
have “very high level modules” of separate mechanical design and software design,
but constructions made of discrete heterogeneous robots do not afford that luxury.
Perhaps a designer requires the behavior of the construction in Figure 4 (left) but
needs a flat (2-D) construction. Perhaps she requires the hierarchical organization
of Figure 4 (right) but needs the construction to have a minimal surface area.
Satisfying these requirements may be possible but it is likely not easy.

4.3 Representing Constructions: Genotype vs. Phenotype

An area for improvement in the Erstwhile Agent is in the representation of
constructions themselves. The simple, direct representation we used in these
experiments is incapable of the tremendous power of a genetic language that can
specify (for example) reuse, modularity, symmetry, and self-similarity with a
minimal amount of information. We attempted to design a language like this [13]
but realized that our language would give rise only to constructions with the
attributes we designed into it. We concluded that what is really needed is a genetic
encoding that can itself evolve, incorporating new operators on its own. This
remains to be done.

4.4 To Design, or to Design Requirements?

Evolutionary algorithms are demonstrably a viable method of design in many
domains. We can have them design things —even robots—for us. But we must
design the evaluation ourselves, which is generally not trivial. Our attempts to get
the Erstwhile Agent to create ‘stateful’ constructions highlight the first difficulty
inherent in automating design: design problems are open-ended. If we can specify
requirements so precisely that they can be tested in analytical simulation, then
basically we have designed a solution.

12



We have, of course, seen responses to the same problem in the field of software
engineering. Long requirement specifications lead to a series of unit tests and
specialized tools; requirements engineering can become the most time and labor
intensive components of a development project. Although you can specify the
software so completely that it can be automatically generated and verified, at that
point you have done as much work as writing the software yourself.

The question is whether by painstakingly writing the specification (evaluation
criteria) you have gotten anywhere. The answer is clearly “yes.” Even if you do the
design work yourself, the evaluation criteria still must be specified. Without it, there
is no way to know whether your designs are satisfactory. The challenging work of
creating design requirements that we have discussed is not unique to automated
design systems: no matter who does the work, there must be an evaluation
framework to determine the quality of the designs.

Perhaps this is the future for automated design. Before this is possible, however,
much remains to be accomplished in representing design requirements. Software
requirements start with a long list of “shall” statements, but our computer
simulations cannot parse these imprecise descriptions. In order to be useful for
automated synthesis design requirements must take the form of tests that can be
carried out and scored, and these tests often deal with 3D geometry, real-world
scenes, and complex actions. The tests are not easy to write, even for seasoned
programmers.

It's also hard to imagine designers being comfortable writing a series of unit tests in
order to create the framework to evaluate automatically generated designs made of
modular robots. It may be easier to imagine if we can provide an interactive
simulation environment. Designers could create virtual spaces and sensor stimuli
using a familiar palette of digital modeling tools, and then specify requirements as a
series of constraints. Size constraints could be specified with dimensioned outline
limit drawings, path constraints with boundary lines drawn on a floor plan. In a
scheme like this, however, we are still limited to specifying primitive behavior. Any
desired behavior more complicated than simple action-reaction requires
programming.

Automated design methods like the evolutionary techniques described here are
appropriate only for certain problems: those where the evaluation criteria can be
described algorithmically. The evaluation challenges we have outlined are specific
to constructions made of robotic materials, no matter who, or what, designs them.

5. Conclusion

We came from our modular robotics construction kit toy for children to the question
of how to design things made of components like our kit. The design of things
depends, to a large measure, on the properties of the materials they are made of.
This will be no less true of things made of modular robots than of wood, metal,
paper, and plastic. The structure of materials matters. Although modular robot
materials will be programmable, that does not make them indefinitely mutable. The
fundamental characteristics of the modules will strongly influence the properties of
the material they make up.

We used our roBlocks construction kit as a starting point to think about the design
of things made of modular robot materials, specifically robots whose characteristics
are like those of roBlocks: modular, heterogeneous, closely coupled behavior and
form, and governed by diffuse and non-directed information flow. Other systems of
13



modular robots with quite different characteristics are being developed, and these
different characteristics will likely give rise to materials with quite different
emergent properties.

Interestingly, the same properties of roBlocks that make them provocative learning
toys in children’s hands—they are not programmed top-down, each module
provides one and only one behavior—make it difficult to think about designing with
large ensembles. Still, experiences with constructions that have small numbers of
blocks suggest that material made of robots like roBlocks will exhibit interesting
emergent behaviors. The art and methods of design developed over centuries for a
world of materials with relatively static properties, may well not serve. This led us
to experiment with automated design synthesis using the approach of evolutionary
algorithms.

Our journey from children’s blocks to automated design has highlighted one specific
challenge: how to manage the complexity that arises when designing things made of
robot building blocks. It seems likely that we will begin to see materials that are
programmable, and that there may well be many forms of programmable matter.
Work is underway on the physics, material science, and software architectures for
material computing: It is time to think about how to design with this new medium.

Acknowledgments

This work was supported in part by the National Science Foundation under Grant ITR-

0326054.

References

1. Goldstein, SC, Campbell D, and Mowry TC, Programmable Matter. IEEE Computer,
2005. 38(6): p- 99-101.

2. Murata, S, et al.,, M-TRAN: self-reconfigurable modular robotic system. Mechatronics,
IEEE/ASME Transactions on, 2002. 7(4): p. 431 - 441.

3. Nagpal, R, Self-Assembling Global Shape, using Ideas from Biology and Origami, in

Origami3:3rd International Meeting of Origami Science, Mathematics and
Technology (30SME), T. Hull, Editor. 2002, A.K. Peters. p. 219-231.

4. Rus, D and Vona M, A physical implementation of the self-reconfiguring crystalline
robot, in Intl Conf Robotics and Automation (ICRA). 2000. p. 1726-1732.
5. Stay, K, Lyder A, Garcia RFM, and Christensen D, Hierarchical Robots, in Workshop

on Self-Reconfiguring Robots at Intelligent Robots and Systems (IROS). 2007, IEEE:
San Diego, USA.

6. Yim, M, Duff D, and Roufas K, PolyBot: A Modular Reconfigurable Robot, in Intl. Conf.
on Robotics and Automation (ICRA). 2000, IEEE. p. 515-519.
7. Harel, I, Children Designers: Interdisciplinary Constructions for Learning and

Knowing Mathematics in a Computer-Rich School. 1991, Norwood, NJ: Ablex
Publishing Corporation.

8. Papert, S, Mindstorms: children, computers, and powerful ideas. 1980, New York:
Basic Books, Inc.

9. Resnick, M and Silverman B, Some reflections on designing construction kits for kids,
in Interaction Design and Children (IDC). 2005, ACM: Boulder, USA. p. 117-122.

10. Watanabe, R, et al., The Soul of ActiveCube - Implementing a Flexible, Multimodal,

Three-Dimensional Spatial Tangible Interface, in Proc. of ACM SIGCHI International
Conference on Advanced Computer Entertainment Technology ACE 2004. 2004. p.
173-180.

14



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Anderson, D, Frankel, ]., Marks, J., Agarwala, A., Beardsley, P., Hodgins, ]., Leigh, D.,
Ryall, K., Sullivan, E., Yedidia, J., Tangible Interaction + Graphical Interpretation: A
New Approach to 3D Modeling, in SIGGRAPH 2000. 2000, ACM. p. 393-402.
McNerney, TS, From turtles to Tangible Programming Bricks: explorations in
physical language design. Personal Ubiquitous Computing, 2004(8): p. 326-337.
Schweikardt, E, Designing Modular Robots. 2008, PhD Dissertation, Computational
Design, Carnegie Mellon University

Schweikardt, E and Gross M. The Robot is the program: interacting with roBlocks. in
Tangible and Embedded Interaction. 2008. Bonn, Germany: ACM.

Schweikardt, E and Gross MD, roBlocks: a robotic construction kit for mathematics
and science education, in Intl. Conf. on Multimodal Interfaces (ICMI). 2006, ACM:
Banff, Canada. p. 72-75.

Schweikardt, E and Gross MD, A Brief Survey of Distributed Computational Toys,, in
First IEEE workshop on Digital Game and Intelligent Toy Enhanced Learning
(DIGITEL). 2007: Jhongli Taiwan. p. 57-64.

Schweikardt, E and Gross MD, Learning about Complexity with Modular Robots, in
The 2nd IEEE International Workshop on Digital Game and Intelligent Toy Enhanced
Learning. 2008, IEEE: Banff. p. 116-123.

Braitenberg, V, Vehicles: Experiments in Synthetic Psychology. 1984, Cambridge,
MA: MIT Press.

Bentley, P, ed. Evolutionary Design By Computers. 1999, Morgan Kaufmann.

Funes, P and Pollack J, Computer Evolution of Buildable Objects for Evolutionary
Design by Computers, in Fourth European Conference on Artificial Life, I.H. Phil
Husbands, Editor. 1997, MIT Press.

Cagan, J, Campbell M], Finger S, and Tomiyama T, A Framework for Computational
Design Synthesis: Model and Applications. Journal of Computing and Information
Science in Engineering, 2005. 5(3): p. 171-181.

Sharkey, NE and Heemskerk ], The neural mind and the robot, in Neural Network
Perspectives on Cognition and Adaptive Robotics, A.]. Browne, Editor. 1997, I0OP
Press: Bristol, UK. p. 169-194.

Dourish, P, Where the Action Is: The Foundations of Embodied Interaction. 2001,
Cambridge, MA: MIT Press.

Baker, JE. Reducing Bias and Inefficiency in the Selection Algorithm. in Proceedings
of the Second International Conference on Genetic Algorithms and their Application.
1987: Hillsdale.

Hornby, GS, Lipson H, and Pollack ]B, Generated Representations for the Automated
Design of Modular Physical Robots. IEEE Transactions on Robotics and Automation,
2003.19(4): p. 703-719.

Sims, K. Evolving Virtual Creatures. in International Conference on Computer
Graphics and Interactive Techniques. 1994.

Brooks, R, Intelligence Without Representation. Artificial Intelligence, 1991. 47: p.
139-151.

15



