
Computers & Graphics 24 (2000) 835}849

Calligraphic Interfaces

Drawing on the Back of an Envelope: a framework for
interacting with application programs by freehand

drawing

Mark D. Gross*, Ellen Yi-Luen Do

Design Machine Group, Department of Architecture, University of Washington, Seattle, WA 98195-5720, USA

Abstract

The Back of an Envelope project demonstrates how a calligraphic interface (one that employs a pen or stylus to input
freehand drawing marks) can be used in a wide variety of domains, from databases to simulation programs, to 3D
modeling, from mostly symbolic diagrams to freeform sketches. The wide variety of drawing types and domains calls for
a diverse range of approaches. We describe some of the functionality of our systems, including contextual recognition of
symbols and con"gurations and emergent shape recognition, and some of the calligraphic interfaces we've built. (2000
Elsevier Science Ltd. All rights reserved.

Keywords: Design; Diagramming; Freehand sketching; Human}computer interface; Knowledge-based design systems; Recognition

1. Introduction

People often use drawings and diagrams to communic-
ate with one another*at whiteboards, formally in tech-
nical papers, and informally on scraps of paper. Although
these visual explanations need not stand alone, they are
valuable additions to information conveyed using other
means and modalities. People could bene"t from com-
puters that communicate with diagrams and drawings in
addition to speech, text, and structured window}mouse
interactions.

Exciting new work is being done in the multi-
disciplinary area of diagram-based reasoning: cognitive
scientists are examining how diagrams aid human
thinking and arti"cial intelligence researchers are
looking at the implications of machine reasoning with
diagrammatic representations [1]. Increasing interest
in diagrammatic reasoning underscores the need to

*Corresponding author. Tel.: #1-206-616-2817; fax: #1-
206-616-4992.

E-mail addresses: mdg@cs.washington.edu (M.D. Gross),
ellendo@u.washington.edu (E.Y.-L. Do).

research and develop interactive, pen-based, or `cal-
ligraphica interfaces for a potentially wide range of
application domains.

Drawings range from the informal quick sketch to the
carefully constructed illustration. Some drawings convey
mostly symbolic information, for example, a molecular
diagram. Others convey mostly shape, but hardly any
symbolic, information, for example, a sketch for an auto-
mobile body. Some drawings are in between: they convey
both symbolic and geometric information, for example,
a sketch map to help a guest "nd the way to your home.
In the Back of an Envelope project we have been inves-
tigating the uses of sketches, diagrams, and drawings in
various contexts and constructing calligraphic interfaces
for diverse purposes.

Most of the computer-based tools that support the
creation and editing of graphic data fall into one of two
categories: highly structured interfaces for creating accu-
rate and speci"c, drawings and models; and interfaces
that allow freeform input but that do not attempt to
structure it. For example, CAD drawing and modeling
programs belong to the "rst category, and paint pro-
grams belong to the second. Structured interfaces are
useful when the designer is prepared to make precise and
speci"c commitments (for example, as to shape, dimen-

0097-8493/00/$ - see front matter (2000 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 9 7 - 8 4 9 3 (0 0) 0 0 0 8 7 - X

sion, and position of elements), but for many tasks (such
as conceptual design) the designer is not. On the other
hand, freeform interfaces typically do not capture data in
a format that can be operated on semantically. For
example, if the designer draws a circle in a paint program,
it may be di$cult to select the circle and perform geomet-
ric operations on it. Our approach seeks to combine the
virtues of these two interface styles, to provide the free-
dom and #exibility of freehand drawing, yet be able to
capture the semantic content of input by recognizing and
parsing it. In this way designers may be able to take
advantage of the symbolic and numeric processing of
computers during early, conceptual, thinking, without
having to falsely commit to highly precise representa-
tions.

Despite recent improvements in recognition technolo-
gies (both in pen input and in speech), accurate recogni-
tion rates remain imperfect, and domains that demand
perfect recognition in a single mode of input are likely to
frustrate users: the current generation of continuous
speech recognizers attests to this. However, user accept-
ance of pen interfaces depends on more than purely the
recognition rate [2]; and systems that support multi-
modal interaction may be able to make up for imperfect
modal recognition rates [3].

We describe in brief some of the functionality of the
systems we have built to support and experiment with
calligraphic interfaces. As the title of this paper indicates,
the emphasis of our work is to explore and demonstrate
how freehand drawing can be used to interact with a
diverse array of applications, and to understand the
con"guration of recognition, parsing, and graphic
manipulation that these applications suggest. Although
we have constructed our own recognizer and parser (out-
lined below in Section 4), this is not the focus of our work.
In principle, other recognizers and parsers could be used
in their place. With the exception of the NetDraw group
drawing manager (which is written in Java), all our
prototypes are implemented in Macintosh Common Lisp
(MCL).

The paper is organized as follows. Section 2 reviews
related work in diagram recognition and visual language
parsing and the application of these techniques in sys-
tems to support speci"c tasks. Section 3 presents an
overview of the structure of the Back of an Envelope
system, and Section 4 goes into some detail about
the system's major components. Section 5 shows how
the system has been used to build prototype interfaces
in several application areas: information retrieval
(query by diagram), simulation, and construction of
three-dimensional models, as well as a scheme for
invoking applications appropriate to the task at
hand, based on an examination of the user's graphic
marks. The paper concludes in Section 6 with a brief
discussion and identi"es the tasks that we are presently
working on.

2. Related work

A look at Ivan Sutherland's pen-based `Sketchpada
program [4] reminds us that interacting with computers
through a pen-based interface is not a new idea. As early
as the 1970s, interest in machine processing of hand
drawn diagrams led to some experimental sketch recog-
nition systems [5,6]. However, with the widespread ac-
ceptance of mouse and menu (WIMP style) interfaces in
the 1980s, general interest in pen-based input waned, and
did not revive until inexpensive and cordless digitizing
technologies became widely available in the 1990s. To-
day, pocket sized pen-based computers such as the 3Com
Palm Pilot are extremely popular, although most ap-
plications that run on these machines (personal calen-
dars, notepads, etc.) use the pen only for pointing and
entering text, not for graphical input. The development of
new display technologies such as e ' ink [www.eink.com]
encourage the development of calligraphic, or pen-based
freehand drawing interfaces.

Researchers in a diverse array of "elds have examined
sketching and cognition. Goel [7], for example, argues
that sketches enable designers to engage a kind of think-
ing that is di!erent from the symbolic reasoning that
`traditionala cognitive science tries to account for. Re-
lated arti"cial intelligence and cognitive science research
focuses on diagrammatic reasoning in problem solving
(e.g. [8,9]). Robbins [10] examines the role of drawing in
the production of designs through a series of case study
interviews with well-known architects. Others have
studied the use of drawings generally [11,12] as well as in
speci"c domains such as mechanical design [13], graphic
and interaction design [14], and physics problem solving
[15].

These studies of diagram and sketch notations as aids
to cognition combined with the development of early
visual programming languages such as PICT [16] made
clear the need for `visual grammars for visual languagesa
[17]. Beginning with Kirsch's picture grammars [18],
much work has been done on visual language grammars
and parsing [19}25]. Much of this work assumes that the
visual language expressions to be parsed will be well
formed, a reasonable assumption when structured editing
tools are used to construct diagrams, and for domains
such as visual programming languages in which the rules
of diagramming are stated clearly a priori. For design
domains, as Lakin [17] pointed out, these assumptions
may not hold: design diagrams can be messy, vague, and
incomplete. Systems are needed that tolerate these char-
acteristics, handling parts of the diagram that can be
immediately recognized and parsed while delaying evalu-
ation of those parts of the diagram that may be "lled in
later or whose interpretation may be clari"ed by contex-
tual information.

Recognition of raw input is a basic element of any
system that uses freehand pen-based input for symbolic

836 M.D. Gross, E.Y.-L. Do / Computers & Graphics 24 (2000) 835}849

Fig. 1. Back of an Envelope system overview.

processing. Accurate recognition of arbitrary freehand
drawing input has been only moderately successful, lead-
ing for example to the adoption (on some palmtop com-
puters) of the stylized Gra$ti alphabet for text input
tasks. Recognizers can be distinguished as stroke recog-
nizers that analyze the pen's movement and ink recog-
nizers that analyze the graphic mark the pen makes.
A recognizer may use a "xed algorithm to recognize
a restricted number of shapes [26]. A trainable recog-
nizer may work by statistically matching features of input
data [27]; or it may use neural network models to ident-
ify items in the input data. Recognition rates can bene"t
by feeding back higher level contextual information to
low-level glyph recognizers [28], an approach we follow
in our own system.

Surprisingly, with a growing emphasis on research on
sketch recognition, and visual language parsing, still rela-
tively few systems employ these techniques in application
interfaces. Landay's [29] SILK system allowed designers
to sketch and simulate the performance of user interface
designs. Egenhofer's spatial-query-by-sketch [30] o!ers
a pen-based interface to query a geographic information
system (GIS). Moran's group's Tivoli whiteboard sup-
port system [31,32] uses ink-based (as opposed to
stroke-based) recognition technologies in enabling highly
speci"c meeting support tasks. Stahovich's Sketch ' It
system [33] applies qualitative reasoning simulations to
generate mechanical design variants; despite its name it
does not employ a pen-based interface. The XLibris sys-
tem [34] integrates pen-based input with a lightweight
display for annotating text; it uses an ink-based recogni-
tion scheme. The idea of `intelligent papera or merging
physical and computational drawing environments has

been explored in projects like Clearboard [35] and the
Digital Desk [36}39], though in much of this work
recognition and interpretation of drawings has not
played an important role.

In constructing the BoE we have learned from many of
these earlier systems, and many BoE components are
modeled on them. BoE plays a mediating role: it com-
bines recognition and parsing in an end-user modi"able
scheme, and it provides a simple interface for an end user
to extend the visual vocabulary. It is not built to serve
a single application domain (as for example is SILK,
Tivoli, or spatial-query-by-sketch); rather it is meant to
adapt to various speci"c domains. Unlike other general-
purpose systems such as Digital Desk or Clearboard,
however, the BoE emphasizes recognition and inter-
pretation of graphic input, which is intended to be cus-
tomized to the domain and to the individual end user.

3. System overview

An overview of the BoE system architecture is shown
in Fig. 1. The project began with the Electronic Cocktail
Napkin, which comprises routines for recognizing and
parsing diagrams symbolically. We have added routines
for working with drawings as geometric entities as well.
Drawings are used to communicate with external ap-
plications such as visual databases, simulation programs,
and three-dimensional modeling environments, and with
other people.

Symbolic diagram processing in the Back of an Envel-
ope (BoE) involves recognizing input glyphs drawn on
a drawing pad, and parsing visual language expressions.

M.D. Gross, E.Y.-L. Do / Computers & Graphics 24 (2000) 835}849 837

Fig. 2. Glyph features used for recognition include pen path and corner location in a 3]3 grid, number of corners, and aspect ratio.

Both these recognition steps use a library of stored
graphic symbol templates and visual parsing rules, hier-
archically organized as a set of contexts. Initial process-
ing (IP) of stroke information obtained from the tablet
identi"es each glyph's features. Next, the glyph recog-
nizer (GR) matches features of the input glyph against
previously stored symbol templates in a library (LEX).
The visual language parser (VLP) searches for con"gura-
tions in the drawing.

The system learns new graphic symbols and con"gura-
tions on the #y, from examples presented by end users, so
the interface can accommodate idiosyncratic drawing
styles and preferences. The system is tolerant of ambigu-
ous and unrecognizable glyphs, opportunistically using
information as it becomes available to identify previously
indeterminate glyphs and to recognize con"gurations.

Geometric processing routines for working with non-
symbolic properties of drawings include machinery to
recognize emergent shapes (shapes that the designer did
not draw but may be perceptually present in the drawing)
(ESR), to process 2D projections of 3D forms (3DR), and
"lters (F) to simplify the drawing. These geometry rou-
tines may interact with the symbolic recognizers. For
example, the emergent shape recognizer (discussed fur-
ther in Section 4.2) calls on the glyph recognizer to
determine whether a candidate emergent shape should be
culled or kept.

The BoE interface consists of a drawing pad and
sketchbook windows, with buttons that augment ges-
tural commands. The designer can place simulated trac-
ing paper on the drawing and move it around, bring in
underlay images, copy and paste drawings into and from
the sketchbook, and post drawings on a bulletin board.
In most of our interface applications, the drawing pad
stands apart from the application windows, we have also
experimented with overlaying the BoE drawing window
as a transparent layer on top of the application, and
interacting with the application through the drawing
layer.

4. System architecture

4.1. Symbolic processor

4.1.1. Initial processing
The BoE system captures stroke data from the tablet,

making use of pen path and other stroke features to
identify symbols that the designer draws. The moving
pen generates a stream of (x, y, p) data (p is pressure).
A glyph begins when the designer puts pen to tablet, and
it ends when the designer lifts the pen for longer than
a given time-out duration. A raw glyph consists of a se-
quence of strokes each of which consists of a sequence of
(x, y, p) triples. The input processor examines these data
to identify features: corners, pen path through a 3]3
grid, overall size and aspect ratio, axial direction of the
glyph and the speed with which the glyph was drawn.
Fig. 2 displays the features for several simple glyphs. The
result of initial processing is stored as a glyph data
structure, with a slot for each feature and a pointer to the
raw glyph.

4.1.2. Recognizing graphic symbols
The input processor passes the resulting glyph to the

glyph recognizer (GR), which determines if the glyph
represents a previously de"ned symbol. The recognizer
compares the unidenti"ed input glyph against a library of
symbol templates (LEX) and produces a list of candidate
symbols paired with recognition certainty values from
0 to 5.

Each template in the library corresponds to the glyph
data structure, but in each feature slot the template
records all previously trained feature values, accumu-
lated as the symbol is trained. For example, if the system
has been shown triangles drawn with one, two, or three
strokes then the number-of-strokes slot in the tem-
plate contains the set (1 2 3). If the slot value in the in-
put glyph is a member of the set in the template, then
that feature of the input glyph is deemed to match the

838 M.D. Gross, E.Y.-L. Do / Computers & Graphics 24 (2000) 835}849

Fig. 3. The symbol template for step in the section context, showing slots and allowable values, and displaying the pen path in a 3]3
grid.

template. Fig. 3 shows a template for a &step' glyph
showing feature slots and allowable values; for example,
the step has been trained with one, two, and three corners.

Matching an input glyph against a library of symbol
templates proceeds in several steps. An exact match is
attempted by using the pen path as a key in a hash table
of glyph templates. This retrieves any templates whose
pen path feature matches that of the candidate without
searching the entire library. If a candidate's pen path
exactly matches that of a template and other glyph fea-
tures match the template then the match succeeds and
the new symbol is granted the maximum certainty value
of 5.

Otherwise, ninety degree rotations, re#ections, and pen
path reversals are compared in a similar hash-table
match against the templates. The 3]3 grid representa-
tion of the pen path makes it simple and fast to check
these transformations using a lookup table. The library
of templates need store only one rotation or re#ection of
a symbol yet it can match the various transformations.
Of course, not every glyph may be drawn in rotation
or re#ection: A re#ected `Na is not an `Na and a `Ua
rotated makes a `Ca. Each template records the allow-
able transformations for the symbol, so for example,
a U may be drawn backward but not upside down. If
a glyph's pen path transformed matches a template in the
library, and the other glyph features also match, then the
symbol is granted a maximum certainty value of 5.

If the candidate's pen path (directly or in transforma-
tion) fails the hash-table match, the glyph recognizer

begins a more laborious feature-by-feature comparison
of the input glyph with each symbol in the library. First,
the recognizer attempts a partial match of pen path that
tolerates minor variations, also comparing rotations, re-
#ections, and reversals. Next, it compares number of
strokes, number of corners, and corner location in the
3]3 grid, as well as overall size and aspect ratio. This
enables the recognizer to distinguish, for example, a large
box from a small one, and a square from a long #at
rectangle. Depending on the number of matching fea-
tures, the recognizer assigns a certainty value of 0}5 to
the match, where 0 indicates that the recognizer failed
entirely to "nd a match, and 5 indicates that the candi-
date glyph matched the template in all its features.

After the recognizer has done its best to identify the
input glyph it sets the glyph's name and type slots. The
matching process results in a set of matches each with an
associated certainty value. The recognizer sorts matches
by certainty and selects the most certain match. If the
recognizer cannot identify an input glyph (zero matches)
its name and type remain &unknown' and are left for
future identi"cation. On the other hand, several library
templates may match the input glyph equally well. Then
the ambiguous input glyph is assigned a set of possible
identities that may be re"ned or resolved later.

4.1.3. Parsing visual language
The visual language parser (VLP) identi"es con"gura-

tions of symbols in the drawing. When the designer
pauses, the parser attempts to assemble con"gurations

M.D. Gross, E.Y.-L. Do / Computers & Graphics 24 (2000) 835}849 839

Fig. 4. A stair con"guration de"ned in the section context links a set of steps.

from elements in the drawing. It applies a grammar of
spatial replacement rules that de"ne con"gurations
in terms of their elements and binary spatial relations.
Recognized spatial relationships include adjacent, con-
taining, and overlapping shapes, and intersection,
parallel, and tee conditions among line segments. The
following simple rule, for example, might be used in a
grammar for #ow charts:

labelled
!

box::""(containsbox label)

where box is a terminal element (a de"ned graphic sym-
bol) and label is de"ned by the recursive rule, which
recognizes any string of one or more letters as a label:

label::""(or letter

(immediately
!

right
!

of label letter))

The binary spatial relationships contains and
immediately-right-of are each a constraint on the
positions and/or dimensions of a pair of drawing ele-
ments. Fig. 4 shows a dialog for de"ning and editing
a visual grammar rule in which a set of adjacent steps
make up a con"guration called &stairs.'

For each grammar rule the parser tries to "nd match-
ing instances in the drawing. It "rst "nds a subset of all
the drawing elements that match the element types in the
rule (in this case, elements of type label or letter). Then
for each set of possible bindings of drawing elements to
variables in the rule, the parser checks whether the spa-
tial relation holds. When the parser "nds a set of elements
that match the types and spatial relations in the rule, it

adds the con"guration (a label) to the drawing in place
of the elements, which become the new con"guration's
parts. It applies the grammar's rules iteratively and
exhaustively.

4.1.4. Using conxgurations to recognize ambiguous
and unknown symbols

A glyph's position in a con"guration can resolve ambi-
guity or uncertainty about its identity. When the recog-
nizer fails to uniquely identify a glyph, the glyph is
assigned an &unknown' identity or, when it matches sev-
eral known symbols equally well, a multiple, &ambiguous'
identity. In attempting to parse a con"guration, the par-
ser may "nd that an unknown or ambiguous glyph is in
the expected spatial relationship with other parts of the
con"guration to be a certain type of element. The parser
can use this to resolve or coerce the glyph's identity. The
parser resolves an ambiguous glyph if one of its possible
identities matches the part the glyph would be in the
con"guration. For an unidenti"ed glyph, the parser re-
quests the recognizer to determine whether the glyph's
features contradict the proposed identity, and if not, it
coerces the unidenti"ed glyph.

4.1.5. Contexts
Diagrams in di!erent domains employ the same basic

drawing symbols in di!erent ways. As with natural
language, context often helps determine the meaning of a
visual language expression. We saw above how an
element's part in a con"guration is used to resolve
ambiguous and unknown glyphs. Knowledge about

840 M.D. Gross, E.Y.-L. Do / Computers & Graphics 24 (2000) 835}849

Fig. 5. In the section context, a rectangle maps to a window, and
a horizontal line above a wiggly line maps to the ground.

the context of the drawing as a whole can also help
recognition.

The library of recognizable symbols and con"gura-
tions is organized as a hierarchy of drawing contexts,
which allows the program to interpret a diagram in
specialized domains. The program can use knowledge of
the context to assist recognition and interpretation of
glyphs and con"gurations. Conversely, a unique glyph or
con"guration can reveal the context of a diagram. Each
context contains de"nitions for:

f graphic symbols (glyph templates) that are unique to
the context,

f con"gurations (recognition rules),
f mappings of symbols and con"gurations from more

general contexts.

Contexts are organized in a hierarchy with `the gen-
eral contexta at its root. The default, or general, context
de"nes graphic symbols that are common to most dia-
grams, such as line, circle, box, and arrow. In addition to
de"ning special symbols and con"gurations used in
a particular domain, a context may map symbols and
con"gurations that are de"ned in more general contexts
to more speci"c de"nitions. For example, the section
context maps the general symbol rectangle to window.
The same general symbols have di!erent mappings in
di!erent speci"c contexts, so the glyph templates used to
recognize the symbols are stored only once, in the general
context. For example, the diagram in Fig. 5 has been
recognized as a §ion' diagram, and the system has
made the appropriate mappings.

The system keeps track of the current context, and the
recognizer and the parser "rst try the current context for
recognizing input glyphs and con"gurations. If this yields
no matches or only uncertain ones, then they proceed to

the next most general context. If they "nd a match in
a more general context, they apply the current context's
mappings, for example changing the recognized
rectangle symbol to a window.

If no context in the current chain yields a match for an
input glyph, then the recognizers and parser will search
other, more speci"c contexts. Likewise, the parser will try
to recognize con"gurations de"ned in more speci"c con-
texts. If a symbol or con"guration from a more speci"c
context is recognized, this sets the drawing's current
context, which guides subsequent recognition. This en-
ables the system to proceed, for example, from the gen-
eral default context to a more speci"c one.

4.2. Drawing management and geometric processing

4.2.1. Gesture commands
Any BoE system command may be assigned a glyph or

2D gesture. For example, we have trained the system to
recognize the Greek letter alpha as a `clear screena com-
mand. Gesture commands are modeless * they may be
executed at any time and screen location, so they must be
distinguishable from other drawing symbols. A com-
mand may operate on drawing elements that have been
previously selected or are indicated by the spatial extent
of the gesture. For instance, the `erasea gesture applies to
the drawing elements it covers.

4.2.2. Trace layers, underlays, and transparency
Designers use tracing paper to copy and combine parts

of drawings, to try alternatives, and to move and rotate
design elements. Its not uncommon to "nd three or four
layers of tracing paper overlaid on top of a base drawing.
The BoE o!ers a system of layers that simulates translu-
cent tracing paper: layers on top partially obscure lower
layers so that marks on lower layers appear fainter. Each
layer may be individually manipulated, and a drawing
layer may be pulled out of the drawing and posted on
a bulletin board, or pasted in to the sketchbook. Scanned
images and drawings made in other applications may be
brought in as a base layer for the drawing (Fig. 6), or the
entire drawing pad may be rendered transparent and
placed on top of another application window.

4.2.3. Overtrace xltering
Multiple overtracing strokes often produce a drawing

with many elements that appears quite complex. When
overtraced lines are removed, or "ltered, the drawing
appears much more concise. Filtering reduces overtraced
drawings to a simpler form by replacing multiple ele-
ments in approximately the same location by a single
one. The drawing can also be "ltered to eliminate ele-
ments smaller than a certain size, or elements that the
program cannot recognize. The program notes the num-
ber of overtraced elements and stores this number in the
one instance that remains in the "ltered diagram. Filter-

M.D. Gross, E.Y.-L. Do / Computers & Graphics 24 (2000) 835}849 841

Fig. 6. The designer draws on trace layers, on top of an imported base underlay image.

Fig. 7. Filtering can simplify a drawing to essentials.

ing allows the system to treat the basic elements of
a drawing without managing large amounts of irrelevant
detail (Fig. 7).

4.2.4. Graphical search and inexact conxguration
matching

The BoE's similarity matcher (SM) identi"es drawings
that have common features but are not identical. Inexact
matching is useful, for example, to "nd diagrams in
a stored database that resemble in one way or another
a drawing made on the drawing pad. The Back of an
Envelope employs several measures of similarity that can

combine to make a single weighted average (see Fig. 8).
Two drawings may be compared with respect to their
number of elements: If both have the same element count
they are equivalent with respect to this measure. Two
drawings may be compared with respect to the number of
elements they share: if they have all the same elements
they are equivalent, otherwise they may di!er by some
number of elements. They may be compared with respect
to spatial relationships: If their elements are arranged
in the same spatial relationships, they are equivalent
with respect to this measure, regardless of the element
identities.

842 M.D. Gross, E.Y.-L. Do / Computers & Graphics 24 (2000) 835}849

Fig. 8. Each pair of diagrams is equivalent with respect to spatial relations, but di!erent with respect to element type [40].

Fig. 9. The emergent shapes recognizer generates alternate readings of a given "gure.

4.2.5. Constraints
The spatial relationships among drawing elements can

be understood as constraints on their relative positions,
dimensions, and orientations. The symbolic recognition
routines use these spatial relationships to identify con"g-
urations and apply graphical replacement rules, but the
same spatial relationships can be treated as enforceable
constraints. In one prototype system we implemented
a simple constraint propagator that enforced spatial rela-
tionships that the visual language parser recognized
among drawing elements. For instance, if two circles
were drawn linked by a line segment, the system would
keep them linked; if a square was drawn inside a circle, it
could not be moved out. No special user action was
required to apply the constraint: any recognized spatial
relationship was applied and enforced automatically.
A variation on this constraint enforcement is to apply
constraints to drawing elements upon recognition: draw-
ing elements of certain types automatically get certain
constraints that govern their layout and interaction be-
havior with other elements.

4.2.6. Emergent shapes
Draw programs usually record and recognize only the

elements that the designer has entered * lines and geo-
metric shapes* and only these elements may be selected
and operated on. Some draw programs recognize that
crossing lines form new segments and they allow the
designer to select these segments, or even the continuous
polygons formed by sets of these implicit or &emergent'
line segments. This is a simple example of the more
general &emergent shapes' issue: When two or more draw-
ing elements are combined the human eye often perceives

"gures that were not explicitly drawn. The machine,
however, must be programmed to attend to these &emerg-
ent' shapes.

The BoE's emergent shapes recognizer (ESR) comes
into play when two or more distinct glyphs overlap or
intersect. When the designer is not drawing, the ESR
identi"es the glyphs' intersections, generates a set of
candidate emergent shapes, and runs the glyph recog-
nizer on the candidates. Beginning at the start point of
one of the two glyphs, the generating algorithm walks to
the next intersection and proceeds in one of the three
possible directions. At each intersection, it again chooses
a direction. When it reaches an endpoint, it has generated
one possible reading of the "gure. It then repeats the
process from the starting point, but choosing a di!erent
path each time, until it exhausts the possibilities. This
results in a set of alternative partial readings of the
diagram (Fig. 9). Additional smaller candidates are gen-
erated by taking subsets of the each of the candidates.
Each candidate is passed to the glyph recognizer. Most of
the candidates are nonsense shapes and the ESR will
discard them, but occasionally one will match a pre-
viously de"ned graphic symbol in the library, for
example, a rectangle. When the ESR recognizes an
emergent shape it momentarily highlights the shape and
then adds it to the drawing as though the designer had
drawn it explicitly.

5. Application programs

We have constructed calligraphic interfaces to a var-
iety of application programs. These range from visual

M.D. Gross, E.Y.-L. Do / Computers & Graphics 24 (2000) 835}849 843

Fig. 10. Floor plans sketched in the BoE environment are brought into the IsoVist simulator (right) to check view shed from various
locations.

database retrieval to simulation to Web page layout and
three-dimensional modeling. Together these prototypes
demonstrate that calligraphic interfaces can be used for
diverse application types and in a range of domains.

5.1. Indexing and retrieval, or query-by-sketch

We have used the BoE system to index and retrieve
items in visual and non-visual databases. In each in-
stance, database items are "rst indexed with diagrams,
and subsequent queries are compared with these index
diagrams. A lookup table of diagrams stored in the BoE
sketchbook serves as a catalog to the database. For
example, we used diagrams to index `The Great Build-
ings Collectiona, a CD-ROM database of famous archi-
tecture. Diagrams were drawn for database entries on the
pages of a BoE sketchbook. To retrieve a database entry,
the similarity matcher compares a query diagram drawn
on the drawing pad with diagrams on the sketchbook
pages, and selects the most similar page. Then the BoE
sends an interapplication `retrieveamessage to the Great
Buildings Collection database for the record that is lin-
ked to the sketchbook page. We applied this scheme to
several other databases: Archie II case base of design
information about libraries and courthouses (written in
Lisp), and pages in the World Wide Web (browsed with
Netscape or Internet Explorer). A sketchbook page may
include pointers to several di!erent databases, so a single
diagram query may trigger numerous and diverse re-
sponses.

5.2. Simulation

We have also applied the BoE as an interface to simu-
lation programs, where the drawing speci"es the system
to be modeled. Most simulation programs today require
fairly formal and complete descriptions in order to run,
although crude simulations for conceptual analysis could
be driven by sketches and diagrams.

One example is the IsoVist program, which simulates
the two-dimensional viewshed of an observer in a room,

graphically displaying the #oor plan area visible from
a given standpoint. (Viewshed simulations are important
in designing auditoriums, galleries, courtrooms, and
other public places. They give valuable information to
the designer about lines of sight and the degree of privacy
that a space will provide.) Input to a viewshed simulator
would typically be a CAD drawing, but our interface
allows the designer to sketch the #oor plan and import
the sketch into the IsoVist simulator (Fig. 10). Line seg-
ments, which represent walls, are extracted from the
drawing database, and the position data from their end-
points are used to create wall objects in the IsoVist
database. Once the #oor plan has been brought into
IsoVist the designer can locate standpoints and examine
viewsheds. The designer can also move walls in IsoVist
program by direct manipulation and later bring the
modi"ed #oor plan back into the BoE environment.

5.3. Construction

A third area of application for calligraphic interfaces is
modeling and construction in both two and three dimen-
sions. These applications rely not only on the symbolic
content of the drawing, but use the drawing geometry
* positions and dimensions of drawing elements * as
well.

The "rst example deals simply with two-dimensional
graphic layout: WebStyler is a calligraphic interface for
Web page construction (Fig. 11). The designer draws
a Web page layout, indicating positions of text, headlines,
indents, and graphics using graphic design symbols.
Recognition routines identify the symbols and con"gura-
tions for the various types of layout objects; sizes and
positions are also obtained from the drawing. Then,
given a collection of graphics and text to lay out
WebStyler generates HTML code that formats these
materials according to the sketch.

The second example, Digital Clay, generates three-
dimensional models from two-dimensional line drawings
(Fig. 12). DC illustrates how a designer might use a cal-
ligraphic interface to interact with a CAD modeling

844 M.D. Gross, E.Y.-L. Do / Computers & Graphics 24 (2000) 835}849

Fig. 11. WebStyler is a two-dimensional calligraphic layout tool.

Fig. 12. Digital Clay uses constraint propagation on vertices to produce 3D solid and surface models from sketches.

environment such as Maya, Form 'Z, or 3D Studio Max.
(Our approach may be contrasted with the Sketch! Pro-
gram [41], where the approach is to de"ne a gestural
language to drive a modeler; our approach is to recognize
and interpret line drawings.) The designer makes a line
drawing of a 3D rectilinear geometric form. After
straightening and latching lines, DC uses constraint
propagation [42}44] to determine topology (which
vertices protrude toward the viewer and which recede),
and then assigns 3D coordinates to the topological rep-
resentation. The designer can choose between a surface
model, which includes only the surfaces that the drawing
shows, or a solid model, which requires DC to make
some assumptions about hidden vertices and surfaces. In

either case, once DC has created and displayed the three
dimensional model, the designer can rotate it and specify
the previously hidden geometry by drawing additional
lines over the model.

Finally, we have begun using a calligraphic interface
to directly generate three-dimensional virtual reality
worlds. Our SketchVR prototype extrudes a #oor plan
drawing into three dimensions (Fig. 13). The #oor plan
may include symbols and con"gurations for architectural
elements such as columns and furniture as well as view-
point and path indicators to be used in the VR world.
SketchVR produces a VRML "le that can be viewed in
a standard browser, including architectural elements and
furniture chosen from a catalog that corresponds to the

M.D. Gross, E.Y.-L. Do / Computers & Graphics 24 (2000) 835}849 845

Fig. 13. A sketched #oorplan (a) becomes a VRML model (b) that the designer can enter (c) while the designer's path through the model
is recorded on the plan (d).

Fig. 14. The right tool/right time manager accepts calligraphic input, identi"es the drawing context, from which it infers the designer's
intention, and passes input to an appropriate application.

symbols and con"gurations that the designer drew in the
plan. The designer can sketch a #oor plan and immedi-
ately experience what it is like to be inside the space. The
VRML browser continually reports the viewer's location
in the #oor plan, and back in the sketched #oor plan the
viewer's path is plotted as a series of dots.

5.4. Right tool}right time manager

If calligraphic interfaces can be used in diverse ap-
plication domains, perhaps the interface itself could be
programmed to supervise application management,
directing calligraphic input toward intended back end

applications. The `Right Tool at the Right Timea man-
ager explores this idea. In a pilot study of 62 architecture
students, and a follow up study of four architectural
designers doing design, we found that the designer's task
could be identi"ed by analyzing the drawing [45]. When
designers were asked to solve a lighting problem, for
example, they drew certain symbols and con"gurations;
when they were asked to solve a space arrangement
problem, they drew others. Based on this observation, we
programmed a management routine to launch and direct
calligraphic input at di!erent applications, depending on
the symbols, con"gurations, and context detected in the
drawing. Fig. 14 shows the steps this RTRT manager

846 M.D. Gross, E.Y.-L. Do / Computers & Graphics 24 (2000) 835}849

follows to identify an appropriate application based on
an input diagram. Although this management may fall
short of a general purpose operating system for cal-
ligraphically driven applications, it could be useful within
the scope of a single multi-application domain such as
architectural design.

6. Discussion and future work

The Back of an Envelope project is exploring a broad
range of applications for calligraphic interfaces. We have
taken several approaches, in some cases looking at draw-
ings as symbolic visual expressions, in others looking at
drawings as geometric entities. We have aimed for end-
user programmability rather than trying to support
drawing in one speci"c domain. Although we do not
make great claims for the performance of our glyph
recognizer, it does have some simple virtues. It is train-
able and it easily supports transformations of the glyph,
and we can specify on a per-glyph basis whether rota-
tions, re#ections, and variations in size are isomorphic to
the trained template. We tolerate ambiguous glyphs, and
identi"cation can be postponed. The con"guration par-
ser is also simple; again end users program it by drawing
examples. The contextual recognition and the recogni-
tion of context allows for an interaction between the
low-level recognizer and the parser. An important di!er-
ence between our e!ort and many other pen-based draw-
ing editors is that, although we support visual language
parsing, we also tolerate drawing expressions that the
parser cannot recognize.

The decision to locate glyph templates and visual lan-
guage rule sets in individual hierarchically structured
contexts seems to be a powerful addition to the basic
recognition and parsing mechanisms that we had imple-
mented previously. It has made it possible to use the
same drawing environment to interact with di!erent ap-
plications at di!erent times, and it mitigates recognition
errors by partitioning symbols that might otherwise be
confused. However, we have not systematically con-
sidered variations of the context mechanisms (and the
mapping of glyphs from one context to another). This is
an area for future work.

Our approach to constructing a calligraphic interface
to an application requires controlling the application
externally, in e!ect by redirecting pen input as events that
the application understands. One of the biggest chal-
lenges has simply been that personal computer applica-
tions vary widely in their ability to accept control other
than through their own keyboard and mouse interface.
Microsoft Word, for example, will respond to scripts
written in Visual Basic that can manipulate text on the
screen, but it is di$cult to get Word to identify the point
in the text bu!er that corresponds to a given window
location in pixels. Some programs, for example the popu-

lar 3D modeler Form 'Z, simply do not accept external
commands. Because the applications do not o!er a con-
sistent external interface, we have had to be more ap-
plication speci"c than we would prefer, and we have
occasionally resorted to interacting with applications by
saving and loading "les.

Graphically, we have done little work so far with local
properties of lines and curves, for example, "nding and
working with points of in#ections, concave and convex
sections, discontinuities. Many drawings, especially
non-diagrammatic ones, depend on these properties to
convey their meaning. We intend to add routines for
recognizing features of lines and curves, and add these to
the kinds of constraints and relationships that our system
supports.

We have explored using the BoE systems in several
groupware drawing explorations. In one version, we lin-
ked several designers working on di!erent machines with
a central drawing server, a Java application we built
called NetDraw that handles synchronization among
multiple clients. Building on this work, we are presently
exploring a system to support whiteboard discussions
among several designers, both co-located and in di!erent
locations. Similar systems have been explored [46}49].
Ours, focusing on design discussions, will link the sym-
bolic recognition and geometric manipulation facilities of
the current system with o!-the-shelf speech recognition
software and a history-keeping mechanism. It will record
and interpret the graphical and audio track of a design
discussion, linking them, and allow for graphical and
textual queries. For example:

Show drawings for all discussions about `lighting.a
Show the transcript for this decision (pointing),
What were we saying about the corner condition here?

We are excited about using drawing to generate, mod-
ify, and annotate in three-dimensional models and virtual
worlds. We plan to extend the capabilities of the Digital
Clay routines that interpret sketches of 3D objects, to
support non-rectilinear forms, incomplete (clipped)
drawings, and use hatching and shading to guide three-
dimensional interpretation. Building on the SketchVR
project, we plan to support drawing `intoa three-dimen-
sional models, enabling architects to enter a virtual envi-
ronment, adding to and editing the model as they move
about. Our current prototype supports only extruding
a #oor plan drawing, but we intend to support drawing in
section and elevation projections as well as incorporating
three-dimensional sketching into the VR model.

In a more speculative vein, we are also interested in
developing three-dimensional interfaces for drawing, in
which gestures in three dimensions are used to generate
shape and form. Our initial approach would extend the
systems that we have built that work with two-dimen-
sional drawing to work with three-dimensional sensors.

M.D. Gross, E.Y.-L. Do / Computers & Graphics 24 (2000) 835}849 847

Acknowledgements

We thank Dongqiu Qian, Eric Schweikardt, Jenni!er
Lewin, and Adrienne Warmack, former students at the
University of Colorado, College of Architecture and
Planning who worked on various parts of the Back of an
Envelope project. This research was supported in part by
the National Science Foundation under Grant No. IIS-
96-19856/IIS-00-96138. The views contained in this ma-
terial are those of the authors and do not necessarily
re#ect the views of the National Science Foundation.

References

[1] Glasgow J, Narayanan NH, Chandrasekaran B, editors.
Diagrammatic reasoning: cognitive and computational
perspectives. Menlo Park, CA: AAAI Press/MIT Press, 1995.

[2] Frankish C, Hull R, Morgan P. Recognition accuracy and
user acceptance of pen interfaces. CHI '95 Conference
Proceedings. ACM SIGCHI, Denver, 1995. p. 503}10.

[3] Oviatt S, Cohen P. Multimodal interfaces that process
what comes naturally. Communications of the ACM
2000;43(3):45}53.

[4] Sutherland I. Sketchpad: a man-machine graphical com-
munication system. Proceedings of the 1963 Spring Joint
Computer Conference. Baltimore, MD: Spartan Books,
1963. p. 329}46.

[5] Herot CF. Graphical input through machine recognition
of sketches. Proceedings. SIGGRAPH '76. 1976. p. 97}102.

[6] Negroponte N. Recent advances in sketch recognition.
AFIPS (American Federation of Information Processing)
National Computer Conference, vol. 42, Boston, MA,
1973. p. 663}75.

[7] Goel V. Sketches of thought. Cambridge, MA: MIT Press,
1995.

[8] Funt B. Problem solving with diagrammatic representa-
tions. Arti"cial Intelligence 1980, 13(3).

[9] Larkin J, Simon H. Why a diagram is (sometimes) worth
10,000 words. Cognitive Science 1987;11:65}99.

[10] Robbins E. Why architects draw. Cambridge, MA: MIT
Press, 1994.

[11] Fish J, Scrivener S. Amplifying the mind's eye: sketching
and visual cognition. Leonardo 1990;23(1):117}26.

[12] van Sommers P. Drawing and cognition * Descriptive
and experimental studies of graphic production processes.
Cambridge, England: Cambridge University Press, 1984.

[13] Ullman D, Wood S, Craig D. The importance of drawing
in the mechanical design process. Computer Graphics
1990;14(2):263}74.

[14] Wong YY. Rough and ready prototypes: lessons from
graphic design. Proceedings ACM Human Factors in
Computing (CHI) 92.1992. p. 83}84.

[15] Novak G. Diagrams for solving physical problems. In:
Glasgow J, Narayanan NH, Chandrasekaran B, editors.
Diagrammatic reasoning. Menlo Park, CA: AAAI
Press/MIT Press, 1995. p. 753}4.

[16] Glinert E, Tanimoto S. PICT: an interactive graphical
programming environment. Transactions IEEE
1984;17(11):7}25.

[17] Lakin F. Visual grammars for visual languages. National
Conference on Arti"cial Intelligence (AAAI). 1987.
p. 683}8.

[18] Kirsch R. Experiments in processing pictorial information
with a digital computer. Proceedings. Eastern Joint Com-
puter Conference, December 9}13. Inst. Radio Eng. and
Assn. Computing Mach., 1957.

[19] Futrelle R, Kakadiaris IA, Alexander J, Carriero CM,
Nikolakis N, Futrelle JM. Understanding diagrams in
technical documents. IEEE Computer 1992;25(7):75}8.

[20] Golin E. A method for the speci"cation and parsing of
visual languages. PhD, Brown University, 1991.

[21] Golin E, Reiss SP. The speci"cation of visual language
syntax. Proceedings. IEEE Workshop on Visual Lan-
guages. New York: IEEE Press, 1989. p. 105}10.

[22] Helm R, Marriott K, Odersky M. Building visual language
parsers. In: Human factors in computing systems
(CHI '91). New Orleans, LA: ACM Press/Addison Wesley,
1991. p. 105}12.

[23] Marriott K. Constraint multiset grammars. In: IEEE Sym-
posium on Visual Languages. St. Louis: IEEE, 1994. p.
118}25.

[24] Meyer B. Pictures depicting pictures: on the speci"cation
of visual languages by visual grammars. Proceedings of the
IEEE Workshop on Visual Languages 1992. Seattle, WA:
IEEE, 1992. p. 41}7.

[25] Wittenburg K, Weitzman L. Visual grammars and in-
cremental parsing. IEEE Workshop on Visual Languages,
Skokie, IL, 1990. p. 235}43.

[26] Apte A, Kimura TD. A comparison study of the pen and
the mouse in editing graphic Diagrams. Proceedings. 1993
IEEE Symposium on Visual Languages. Los Alamitos:
IEEE Computer Society Press, 1993. p. 352}7.

[27] Rubine D. Specifying gestures by example. Computer
Graphics 1991;25(4):329}37.

[28] Zhao R. Incremental recognition in gesture-based and
syntax-directed diagram editors. Proceedings. INTERCHI
'93. Amsterdam: ACM/Addison-Wesley, 1993. p. 95}100.

[29] Landay JA, Myers BA. Interactive sketching for the early
stages of interface design. CHI '95 * Human Factors in
Computing Systems. Denver, Colorado: ACM Press, 1995.
p. 43}50.

[30] Egenhofer M. Spatial-query-by-sketchIn. In: IEEE Sym-
posium on Visual Languages. Boulder, CO: IEEE, 1996. p.
60}7.

[31] Moran T, van Melle W, Chiu P. Spatial interpretation of
domain objects integrated into a free form whiteboard.
Proceedings of UIST '98. San Francisco: ACM, 1998. p.
174}84.

[32] Moran TP, Chiu P, Melle Wv, Kurtenbach G. Implicit
structures for pen-based systems within a freeform inter-
action paradigm. CHI '95 * Human Factors in Compu-
ting Systems. Denver, Colorado: ACM Press, 1995.
p. 487}94.

[33] Stahovich TH, Davis R, Shrobe H. Generating multiple
new designs from a sketch. Proceedings. Thirteenth Na-
tional Conference on Arti"cial Intelligence, AAAI-96.
1996. p. 1022}9.

[34] Schilit BN, Golovchinsky G, Proce M. Beyond paper:
supporting active reading with free form digital ink anno-
tations. In ACM SIGCHI, 1998. p. 249}56.

848 M.D. Gross, E.Y.-L. Do / Computers & Graphics 24 (2000) 835}849

[35] Ishii H, Kobayashi M. Clearboard: a seamless medium for
shared drawing and conversation with eye contact. CHI
'91* Human Factors in Computing Systems, Monterrey,
CA, 1991. p. 525}32.

[36] MacKay W, Verlay G, Carter K, Ma C, Pagani D. Aug-
menting reality: adding computational dimensions to pa-
per. Communications of the ACM 1993;36(7):96}7.

[37] Mackay WE, Pagani DS, Faber L, et al. Ariel: augmenting
paper engineering drawings. In: Conference Companion
CHI95. Denver: ACM, 1995. p. 421}2.

[38] Newman W, Wellner P. A desk supporting computer
based interaction with paper documents. ACM Human
Factors in Computing (CHI) 92. New York: ACM, 1992. p.
587}92.

[39] Wellner P. Interacting with Paper on the Digitaldesk.
CACM 1993;36(7):87}96.

[40] Evans TG. A program for the solution of a class of geomet-
ric analogy intelligence * test questions. In: Minsky M,
editor. Semantic information processing. Cambridge MA:
MIT Press, 1968. p. 271}353.

[41] Zeleznik R, Herndon KP, Hughes JF. SKETCH: an inter-
face for sketching 3D scenes. SIGGraph '96 Conference
Proceedings. 1996. p. 163}70.

[42] Clowes MB. On seeing things. Arti"cial Intelligence,
1971;2:79}116.

[43] Grimstead IJ, Martin RR. Creating solid models from
single 2D sketches. In: Rossignac J, Ho!mann C, editors.
Third Symposium on Solid Modeling and Applications.
Salt Lake City: ACM, 1995. p. 323}37.

[44] Hu!man DA. Impossible objects as nonsense sentences.
In: Meltzer B, Michie D, editors. Machine intelligence.
Edinburgh University Press, 1971. p. 295}323.

[45] Do EY-L. The right tool at the right time: investigation of
freehand drawing as an interface to knowledge based de-
sign tools. PhD, Georgia Institute of Technology, 1998.

[46] Abowd GD, Atkeson CG, Feinstein A. Teaching and
learning as multimedia authoring: the classroom 2000 pro-
ject. In ACM Multimedia '96. ACM, Boston, 1996. p.
187-198.

[47] Chiu P, Wilcox L. A dynamic grouping technique for ink
and audio notes. Proceedings. UIST 98. ACM, 1998. p.
195}202.

[48] Moran TP, Palen L, Harrison S et al. I'll get that o! the
audio: a case study of salvaging multimedia meeting re-
cords. Proceedings. CHI'97 Conference on Human Fac-
tors in Computer Systems, Atlanta, GA, 1997

[49] Mynatt E, Igarashi T, Edwards WK, LaMarca A. Flat-
land: new dimensions in o$ce whiteboards. Proceedings
ACM Human Factors in Computing (CHI 99). New York:
ACM, 1999. p. 346}53.

M.D. Gross, E.Y.-L. Do / Computers & Graphics 24 (2000) 835}849 849

