
THE THREE R'S OF DRAWING AND DESIGN COMPUTATION

a drawing centered view of design process

MARK D GROSS, ELLEN YI-LUEN DO
Design Machine Group, Department of Architecture, University of
Washington, Seattle, WA 98195-5720, USA

Abstract. A drawing centered view of design process focuses on the
interplay between designer expertise, domain knowledge and media
manipulation. We report on computational sketching software systems
we have implemented to support recording, reasoning, and resolving
in design.

1. Introduction

1.1. MOTIVATION AND RELATED WORK

Ivan Sutherland’s Sketchpad system first demonstrated the power and
promise of interactive, intelligent, pen based graphics to support
engineering design (Sutherland 1963). Among other innovative ideas,
Sketchpad employed what later came to be known as object-oriented
programming, graphics scene-graph hierarchy, interaction with a stylus,
on-screen menus, two-handed interaction, and a relaxation-based
constraint solver to maintain user-specified design constraints on a
drawing. In addition to these technological innovations, Sketchpad
demonstrated how computers might support semantically attached
interactive design drawing, yet for many years little further work was
done.

Several factors fueled a resurgence of interest in pen-based computing,
beginning in the 1990s. Low cost LCD screens and tablet-stylus
technology led to pen-based PDAs such as the Apple Newton, Palm
Pilot, and others, as well as early pen computers and recently the Tablet
PC. This new hardware combined with advances in pattern recognition
rekindled interest in drawing-based systems for design. Over the past few
years a great deal of new work has appeared on sketch design systems.

Many have noted the affordances of sketching in design. Sketching,
for example, allows quick exploration of ideas at a high level of
abstraction, avoids early commitment to a particular solution, allowing

2 M.D. GROSS AND E. Y-L DO

many alternatives to be explored (Fish and Scrivener 1990; Ullman,
Wood et al. 1990). Some experienced designers postpone using
computer-aided design tools because they feel that these tools require a
degree of precision and commitment that is inappropriate for the early
phases of design. They prefer to develop conceptual design sketches with
pencil and paper, moving to computer-aided tools at a later stage of
designing (Cross, Christiaans et al. 1996; Suwa and Tversky 1997).

Many systems aim to understand drawing to provide design feedback.
For example, SILK enables a designer to sketch and test a user interface
design prototype (Landay 2001). EsQUIsE interprets architectural
sketches for design performance evaluation (Leclercq and Juchmes 2002).
An increasing number of researchers consider sketch understanding a
knowledge-based task. They argue that computer can provide domain
knowledge for the task through sketching. For example, the recognition
of device symbols and connections among them in a motor driven
conveyor system diagram could infer motion by reasoning from domain
knowledge (Kurtoglu and Stahovich 2002). The ASSIST mechanical
engineering sketch design system can simulate mechanical movements
and create movies of them, such as a car rolling down a hill (Davis 2002).
Forbus et al, working on military “course of action” diagrams minimize
the role of sketch recognition. They argue that sketch recognition is
difficult for computers and easy for people, and the same information
can be obtained from other sources such as speech and deictic references
(Forbus, 2001). Their system therefore attempts only basic recognition
of spatial pointers (arrows) combined with speech recognition. Their
structure-mapping engine (Falkenhainer, Forbus et al. 1990) is used t o
infer and interpret user actions.

There is also a growing recognition of the value of ambiguity and
tolerance for multiple interpretations (Mankoff, Hudson et al. 2000;
Gaver, Beaver et al. 2003). Saund’s “perceptual sketching” systems
(Saund and Moran 1994; Saund, Fleet et al. 2003) identify patterns in the
lines of a sketch that enable users to select and work with the (emergent)
objects that they see—regardless of how the sketch was initially
constructed. Oviatt & Cohen’s QuickSet system (Oviatt and Cohen
2000) combined sketch and speech recognition, showing that cues from
sketch recognition can improve speech recognition performance, and
vice-versa. Other work on computational support for drawing focuses on
using sketches to produce more refined three-dimensional models
(Igarashi and Hughes 2001; Contero González, Naya Sanchis et al. 2003).

1.2. DESIGN: EXPERTISE, KNOWLEDGE, AND MEDIA

Observing designers at work, we find them simultaneously engaged in
three rather different kinds of tasks. At a practical level we see that they
work with various media, for example making drawings and models and
using these media in communicating with others about the design. We see
also that they engage domain knowledge, for example making predictions

3 R'S OF DRAWING AND DESIGN COMPUTATION 3

and exercising judgments about how a design will perform. And we see
designers allocating their time to different tasks in the design process, at
some points searching for information, at other points generating new
ideas, testing and evaluating alternatives, communicating with colleagues
and clients, or developing basic concepts into specific detailed proposals.
Hence we propose to look at design in terms of three distinct capacities:
as the manipulation of different media with domain knowledge,
governed by design expertise (figure 1).

Figure 1. Levels of computational support for design.

This understanding implies three fundamental components of
computational support for design. First, computational tools must
support the media that designers use to create, edit, view and review, and
exchange designs and design ideas. These media include drawings and text
as well as speech, audio, video, gesture, and collage. Designers are trained
in the use of media to create, capture, consider, and convey ideas.
Although conventional computer media for design, i.e., CAD drafting and
modeling, has primarily focused on hard-line drawings and three-
dimensional geometry, a great deal of creative work in design is actually
carried out in the medium of freehand sketches and diagrams.

Second, computational tools must integrate domain knowledge into
the design decision-making process. Designers know a lot about their
domains, and they exercise a great deal of intelligence in making design
decisions. On occasion, they refer to handbooks, case studies or well-
known examples, previous similar projects; they call for technical
analyses of projected design performance; they seek expert advice.
Computational support for domain knowledge in design has been weighted
heavily toward end-stage analysis and evaluation based on detailed design
representations constructed with structured editors, rather than sketches
and freehand drawings.

Third, computational tools must embody expertise in managing the
design process. That is, independent of any specific design domain, the
tools must help a designer manage the design process — ideation and
retrieval of relevant precedents, generation and evaluation of
alternatives, consulting experts, balancing stakeholder values, etc. Our
work so far has concentrated on the relationship of design media and
domain knowledge, and most of the work outlined here is in this
territory. We return to consider the question of design expertise in the
final section of this paper.

4 M.D. GROSS AND E. Y-L DO

1.3. DRAWING—THE CENTRAL REPRESENTATION IN DESIGN

We take a drawing-centered view of designing. In domains such as
mechanical engineering and architectural design where the product is a
physical object, the drawing is typically the single representation that the
designer uses throughout the designing process, from initial rough sketch
to final fabrication drawing. Although other representations (such as
specifications, component lists, and schedules) also play roles, the
drawing remains the focus of design activity.

Our view of design is colored in the first place and most strongly by
our own training and experience as practicing designers and by first-hand
observation of colleagues and students in the architecture schools where
we have worked, as well as in other disciplines (such as mechanical
engineering) where design is taught. Although we have done a few studies
of design activity (Do, Gross et al. 1999) we largely rely on empirical
work by Goldschmidt, Tversky, and others for insights about the
cognitive roles and functions of drawing in design (Goldschmidt 1994),
(Schon 1992; Tversky 2002).

1.4. THREE R’S OF DRAWING AND DESIGN

We outline in Figure 2 various activities that designers carry out using
drawing as a base representation. We group these activities into three
categories (the three R’s of design): recording, reasoning, and resolving.
Recording activities concern design and knowledge capture—from the
user’s pen input at the stroke level to capturing speech and text during
designing, including design rationale and other annotations that play a
role in collaboration and negotiation. Reasoning activities engage
domain knowledge in various ways—deducing the performance behavior
of a proposed design, retrieving relevant design precedents or cases from
a library or database, stimulating creative thought through reasoning-by-
analogy, and so on. The third R, Resolving, concerns the development
of drawings over the design process from rough, sketchy, and abstract
representations to specific, definite, and well-defined design proposals.

Figure 2. Computational sketching systems must support diverse design activities.

3 R'S OF DRAWING AND DESIGN COMPUTATION 5

1.5. OUR MULTIFARIOUS EFFORTS TO SUPPORT DESIGN DRAWING

Over the past decade we have engaged in a research program and
developed computational support to investigate various aspects of
designing. We began with a recognition-based sketching program written
in Lisp called the Electronic Cocktail Napkin, which formed the platform
for several initial forays into the territory. These efforts focused
principally on how to recognize and interpret freehand drawings and
extract and embed semantic content. We later extended this work with
several components focused on other aspects of designing. For the most
part, we developed each module separately, following the exigencies of
student interest and funding. The result is a collection of apparently
diverse projects that are published in disparate venues. Yet taken
together, we believe that they outline the principal components of a
drawing-centered design system. This proof-of-concept software
illustrates how many of these parts could work. The purpose of the
current paper is to assemble this body of work in relation to our view of
design and decision support. In the interest of providing a larger picture,
we omit technical details, which can be found in the reports we cite on
the individual projects. This paper provides a reflecting commentary and
framework to relate how all these software systems in the context of
drawing and design computation support.

We feel compelled to point out that although most of the examples in
the work described below are from architecture, the model of designing
and the systems we have built are quite independent of this domain.
Although we would be pleased to see computer support systems for
architectural design built along the lines we outline, we feel the strategies
presented here could be incorporated into a wide variety of design support
systems.

2. Drawing Tools to Support the Three R's of Design Activities

2.1. RECORDING – KNOWLEDGE CAPTURE

The capture and management of drawings is central, but important
additional information about a design often accompanies drawings in
various media—speech, text, photographs, even physical samples of
materials—and at various levels of formal representation.

Recording activities concern design and knowledge capture. At the
most basic level we record the user's pen input strokes, pressure and speed
using the Electronic Cockail Napkin as a platform for diagram parsing
and understanding. The Design Amanuensis and Design Recorder projects
extended the capture to include speech and text and provide synchronized
history for reply and search. To support shared drawing, annotation of
design rationale, collaboration and negotiation, we developed the
Immersive Redliner and Space Pen projects which support design drawing

6 M.D. GROSS AND E. Y-L DO

in 3-D and also the synchronous shared whiteboard drawing with design
history in NetDraw. Below we briefly describe each project and their roles
in Design Recording as illustrated in Figure 3.

Recording
Capturing Drawings
Design Rationale
Annotating & Collaborating
History

Electronic Cocktail Napkin

Design Amanuensis

Design Recorder

Immersive Redliner

SpacePen

NetDraw

Figure 3. Recording activities concern design and knowledge capture.

2.1.1. Capturing strokes and recognizing drawing elements
The Electronic Cocktail Napkin (Gross 1996) captures the designer’s

drawing strokes from a tablet. The program stores raw data as a time-
stamped sequence of tuples (x, y, and pressure) which it then analyzes t o
extract features such as drawing speed, corners and points of inflection,
direction, bounding box, size, and aspect ratio, and path through a 3x3
grid inscribed in the bounding box. These features form the basis of a
matching scheme in which glyphs drawn on the tablet are compared
against a library of previously trained templates. The recognizer returns a
set of most likely matching glyphs along with certainty values and details
about the match (for example, that a figure was recognized but drawn
upside down). If the program cannot identify a figure, recognition is
simply deferred. Figure 4 shows examples of user-trained symbols and
configurations (assemblies of symbols) the system recognizes.

Figure 4. Electronic Cocktail Napkin recognizes basic symbols and configurations.

2.1.2. Recording multi-modal design conversations

3 R'S OF DRAWING AND DESIGN COMPUTATION 7

The Design Amanuensis combines the Napkin’s stroke-capture with a
continuous speech-to-text recognizer, storing the multimodal design
conversation for later random-access playback and analysis (Gross, Do et
al. 2001). The converted speech record enables search for key phrases
(“where in the designing did we talk about ‘support column size?’ ”). The
search not only finds items in the spoken and text record, but it also
highlights the drawing activity that took place at the time. The Napkin’s
graphical search facility also enables search for particular figures—which
similarly are linked through their timestamps to the associated text and
speech component of the design record. Figure 5 shows the drawing,
control panel, and timeline views of the design record; the user has
selected text, which highlights the associated graphics.

Figure 5. Design Amanuensis offers recording, playback, and search of the
graphical and spoken design conversation.

The Design Recorder is a later implementation that uses the Tablet
PC to capture speech and drawing input from distributed collaborating
designers. Figure 6 shows the chunking of speech and text, displayed as
selectable icons along a timeline.

8 M.D. GROSS AND E. Y-L DO

 Figure 6. Design Recorder: above: design drawing of two collaborating designers;
below: ‘chunks’ of speech and drawing.

2.1.3. Recording and embedding rationale in designs
The SpacePen (and a predecessor project, the Immersive Redliner)
explored design annotation in three-dimensional models (figure 7).
Collaborating designers (or other stakeholders) sketch and attach text
annotations to mark up a shared three dimensional model (Jung, Do et al.
2002). For example, a designer can propose adding a window by drawing
directly on an existing wall in the 3-D model (figure 7 top). The system
performs simple sketch recognition to identify symbols such as arrows
and rectangles. Sketched lines and text annotations appear to subsequent
viewers of the model and the designer can later act on the proposal. The
system stores design critiques and rationale expressed as drawings or text
which are located in the spatial context where they apply.

3 R'S OF DRAWING AND DESIGN COMPUTATION 9

Figure 7. Recording design rationale and sketch annotations in a 3-D model –
Immersive Redliner (below) and SpacePen (above).

2.1.4. Design History
NetDraw (figure 8) offers a shared drawing surface that enables several
designers to work together simultaneously (Qian and Gross 1999). We also
used NetDraw to explore several ideas related to synchronous
collaboration. NetDraw stores and displays a history of the designing, so
that a designer can return to a previous state and proceed to design from
that point. NetDraw also offers an ephemeral gesture feature whereby a
designer can sketch temporary marks over the design. These marks,
useful for deictic references (“here is the main circulation path through
the building”) appear momentarily on other designers’ drawings, then
gradually fade away.

10 M.D. GROSS AND E. Y-L DO

Figure 8. NetDraw: design history, ephemeral arrow gesture for deictic reference.

2.2. REASONING – DOMAIN SEMANTICS WITH INTELLIGENT SYSTEMS

The work described in the previous section treats drawings and
attendant information simply as graphical data—one might say, as
informal (human-readable) design representations. But much of our
interest in drawing as a design representation hinges on the knowledge
that designers embed in drawings and the reasoning they apply to work on
and with drawings. That is, we are interested in the intelligent processes
of which design drawing is a part, and the ways in which we can use
knowledge based computational systems to enhance design drawing.

Design drawings embed the designer’s understanding of a domain and
assumptions and decisions about the design; and a computer program can
use recognition processes to extract this information, and then reason
about it.

Reasoning activities in design engage domain knowledge in various
ways–including the performance behavior of a proposed design, retrieving
relevant design precedents or cases from a library or database, stimulating
creative thought through reasoning-by-analogy, and so on. We have
implemented several software systems to support design reasoning in the
form of connecting intelligent systems of domain knowledge to provide
design feedback (figure 9). The Napkin's visual language parsers identify
the context of drawing elements and configuration. It also supports
recognition of perceptual figures such as emergent shapes from
overlapping figures. The Stretch-a-Sketch program maintains interactive
behavior among drawing elements using constraint propagation. IsoVist,
Design Evaluator and Napkin-Archie programs support intelligent
feedback such as performance analysis, critiquing and retrieval of relevant
cases from a database. Light Pen offers design decision support guided by
lighting design practice rules. LAN-Tools activates a simulation of
network communication and proposes modifications based on designer's
hand drawn diagrams.

3 R'S OF DRAWING AND DESIGN COMPUTATION 11

Reasoning
Recognition & Visual Language
Emergent Form
Design Relationships & Constraints
Intelligent Feedback

Electronic Cocktail Napkin

Stretch-a-Sketch

IsoVist

Design Evaluator

 Napkin-Archie

Light Pen

LAN-Tools

Figure 9. Reasoning activities engage domain knowledge.

2.2.1 Recognition and Visual Language, Emergence
If computers are to support design drawing as a knowledge-based

activity, then they must recognize and interpret drawing semantics. The
heart of the Electronic Cocktail Napkin is the symbol recognizer
described earlier combined with a visual language parser that identifies
complex configurations built up hierarchically from simpler components.
For example, the system recognizes a building façade as composed of
windows, doors, and a roof composed in certain spatial relationships. The
visual language allows for multiple alternative parses, so that a drawing
can be “read” in several different ways, variously grouping its
components into alternative assembly graphs.

The Napkin’s recognition scheme is contextual: depending on the
drawing context the program recognizes symbols and configurations
differently (Gross and Do 1996). For example, the same symbol may be
recognized in an analog circuit diagram as an inductance and in a
mechanical drawing as a spring. Conversely, when the Napkin identifies a
symbol or configuration that is unique to a context (for example, a
transistor symbol in an analog circuit diagram) then it uses this t o
determine the context and thereby resolve pending recognition
ambiguities.

A first task is recognizing the drawing elements that the designer
intended to represent—walls, columns, and windows in a floor plan, for
instance, or levers, pulleys, and gears in a mechanical drawing. However,
drawings often contain unintended figures formed by spatial relations
among intentionally drawn components, termed emergent shapes or
forms. These shapes stand out to the perceptive human designer, and an
intelligent drawing system must identify them also. We therefore
developed a component of the Electronic Cocktail Napkin that searches
the designer’s drawing for symbols that emerge by combining strokes
from two or more spatially proximate symbols and sub-strokes formed by
intersecting and connecting strokes (Gross 2001). The system first
generates a large set of candidates; then the symbol recognizer selects
those that match previously stored templates. For example, if the

12 M.D. GROSS AND E. Y-L DO

designer draws a diamond inscribed in a square, the program, which has
previously been trained to recognize triangles, identifies the four corner
triangles (Figure 10).

Figure 10. Triangles and diamonds identified in the first (leftmost) diagram.

2.2.2 Constraints bring drawings to life
A designer sees in a drawing more than a static arrangement of

arbitrary symbols; s/he sees its potential transformations. Domain
semantics circumscribe the syntactic transformations of the diagram that
are considered legal. For example, in transforming or editing a diagram of
a mechanism—or a molecule—the designer maintains its essential spatial
relationships. Which relationships in the diagram are essential and which
are arbitrary depends on the domain. In an architectural plan geometry is
essential; in an analog circuit diagram, it is not.

The Stretch-A-Sketch system (figure 11) uses a constraint
propagation engine to augment a drawing with interactive edit behavior
(Gross 1994). First the system extracts the spatial relationships from the
diagram—identifying, for example, elements that are connected,
contained, adjacent, and so on. Then it instantiates these found
relationships as constraints on the diagram elements. Subsequently as the
designer edits the drawing, the system then maintains these constraints,
so that connected, contained, adjacent, elements stay connected,
contained, adjacent etc.

Stretch-A-Sketch simply extracts the constraint relationships from
the drawing. A more sophisticated version would use domain
knowledge—supplied by a module external to the sketching system—to
select the appropriate relationships to apply to the drawing.

Figure 11. Stretch-a-Sketch interprets a floor plan (a) It infers an align-top
constraint so that (b) stretching L also stretches the adjacent room, (c) rooms D

and K retain their adjacency as D moves left, (d) the diagram rectified.

3 R'S OF DRAWING AND DESIGN COMPUTATION 13

2.2.3 The sketch as locus for intelligent feedback
In Stretch-A-Sketch, domain knowledge adds behavior to the

designer’s drawing through constraints. In this spirit, two other projects
explore the idea of using the sketch itself as the locus of domain
feedback. The IsoVist program (figure 12) displays the result of design
performance analysis overlaid on the designer’s sketch (Do and Gross
1997). The program calculates the area of a floor plan that is visible
from a given vantage point (an “isovist”), and displays this polygon on
the floor plan sketch. The designer can move the vantage point around
the floor plan to obtain an isovist calculation at various locations.

Figure 12. IsoVist overlays design performance evaluation on the sketch.

Another example of displaying the results of domain based design
performance evaluation is the Design Evaluator (figure 13), a system for
critiquing sketched designs, which analyzes a floor plan layout for spatial
arrangement and circulation problems (Oh, Gross et al. 2004). When the
system’s rule checkers (‘critics’) detect problematic conditions, the
Design Evaluator notifies the designer using text messages that are linked
to a graphic overlay that marks the problem on the plan. For example, if
the system finds a problem with a circulation path, it will highlight the
path on the floor plan drawing.

14 M.D. GROSS AND E. Y-L DO

Figure 13. Design Evaluator highlights the designer’s drawing (originally
sketched, now rendered in rectified form) with graphical critiquing. Here the path

critic points out a problematic path in the floor plan.

2.2.4 External intelligent systems
A design drawing can serve as input to various external design aids or

tools, which can diagnose problems and opportunities in the design,
suggest relevant or interesting references, offer advice, or evaluate design
performance.

The Napkin-Archie system (figure 14) links the Cocktail Napkin with
Archie, a case base of building designs with associated stories, problems,
and solutions (Gross, Zimring et al. 1994). We added a diagram index t o
the Archie case base, enabling the designer to retrieve design cases that
match a given drawing. For example, Napkin-Archie might recognize a
problematic entrance condition in the drawing and retrieve a similar
design case from the Archie library, illustrating the problem and potential
solutions.

3 R'S OF DRAWING AND DESIGN COMPUTATION 15

Figure 14. Napkin-Archie indexes a case based design aid with diagrams.

A similar scheme drives our “shape based reminding” system, in which
drawing is used to retrieve visual images from a database (Gross and Do
1995). Each stored image is indexed with a diagram. Given a source
drawing, the system uses a multi-dimensional matching technique that
compares the numbers, shapes, sizes, and spatial relationships of elements
to retrieve visually similar images. Depending on the image collection,
the system can be used within a domain (e.g., to find components in a
catalog that most closely match the designer’s drawing) or across
domains, as a creativity-stimulating scheme (e.g., using a floor plan
diagram to search a database of flowers).

Figure 15. Light Pen system provides lighting fixture suggestions based on
designer’s sketches.

A third example is the Light Pen system (Jung 2003), which enhances
the previously described Space Pen program with an expert advisor for
architectural lighting (Figure 15). The designer uses a “light pen” tool t o

16 M.D. GROSS AND E. Y-L DO

sketch desired lighting patterns on the interior surfaces of a 3-D design
model. The program then analyzes the position, size, and intensity of
these drawing marks and delivers this input to a rule based system for
selecting lighting fixtures. The system proposes a set of lighting fixtures
and locations that will produce the desired illumination. Light Pen shows
how one might integrate a knowledge-based advisor in a 3-D sketching
system.

The fourth and last example of linking with an external advisor is the
LAN-Tools system (figure 16). LAN-Tools employs the Cocktail Napkin
to recognize local area network (LAN) sketches, composed of symbols
that represent basic LAN elements such as workstations, printers, and
routers (Kuczun and Gross 1997). The designer’s sketch is then given to a
network design advisor that proposes modifications and improvements.

Figure 16 LAN-Tools – LAN design diagram (left) activates an advisor (right) that
proposes design modifications, here inserting a gateway into the network.

2.3. RESOLVING DESIGNS – FROM ABSTRACT TO SPECIFIC

The previous two sections have examined the first two R's of drawing and
design –– Recording and Reasoning –– activities of recording design
information and applying domain knowledge and expertise to the design
drawing. We turn now to the third R, Resolving –– the process of
specifying a design, from initial concept to detailed specification.
Although we have stressed the importance of retaining a sketchy look
and feel to accurately reflect the designer’s level of commitment and
decision-making in the early stages, sooner or later the designer must
commit to decisions proceed to specify the design. Computational
drawing systems must recognize and support this trajectory—allowing
vague, ambiguous, and abstract representations at the outset, supporting
the move toward more detailed and definite ones, and allowing for some
interplay and movement in both directions. Resolving concerns the
development of drawing over the design process from rough, sketchy, and
abstract representations to specific, definite, and well-defined design

3 R'S OF DRAWING AND DESIGN COMPUTATION 17

proposals. Drawing can be used to beautify and specify design as in
Electronic Cocktail Napkin and WebStyler, or translated into 3-D
visualization with VR-Sketchpad (figure 17). The incremental
formalization includes recognition of drawing symbols and configurations,
to beautification of rectified figures, including the substitution of the
diagram elements to specification drawing illustrated in the Electronic
Cocktail Napkin.

Resolving
Beautifying
Specifying
2-D to 3-D

Electronic Cocktail Napkin

Incremental formalization

VR-Sketchpad

WebStyler

Figure 17. Resolving concerns drawing development & refinement during design.

2.3.1 Beautification
At the simplest level, the Cocktail Napkin’s beautification scheme, in

which each element type may have its own display method, moves the
design along the path from crude sketch to precise drawing. When the
program recognizes that the designer has drawn a stove, for example, in a
kitchen, the beautified stove display method may replace the designer’s
sketchy stove with a dimensioned line drawing from a manufacturer’s
catalog (figure 18). However, this step may well involve additional
selection criteria.

Figure 18. Incremental formalization, from diagram to CAD drawing replacement.

2.3.2 Toward specific commitments, 2-D to 3-D
The challenge of producing 3-D models from 2-D sketches has

attracted a great deal of attention, but it is often seen as a purely a
problem in computer graphics. In the context of design drawing we see
moving from a 2-D sketch to a 3-D model, rather, as an example of
specifying a design. A 2-D design sketch is an abstraction of a 3-D model.

18 M.D. GROSS AND E. Y-L DO

Typically, the 2-D sketch does not in itself provide sufficient detail t o
produce a 3-D model, so information must be added in transforming the
sketch to the model. For example our VR-Sketchpad program (Do 2002)
(figure 19) transforms a floor plan sketch into a 3-D model. The
program makes simple assumptions about the transformation: it extrudes
walls and columns vertically, and it replaces floor plan symbols of
furniture with 3-D models of furniture selected from the library.

Figure 19. VR-Sketchpad generates specific 3-D models from rough 2-D sketches,
extruding architectural elements and selecting furniture from a library.

Although the current VR-Sketchpad system simply maps floor plan
symbols one-to-one with library elements, an intelligent system could
mediate this selection process, depending on characteristics of the floor
plan, previously selected furniture, and so on. We see the transformation
from 2-D sketch to 3-D model not merely as a graphics challenge, but as
an important case of specifying design details.

2.3.3 WebStyler — sketching Web page layouts
Web Styler (figure 20) also supports specification of a design from

sketch to final product, although not in architecture, but Web pages
(Gross 1996). A designer sketches a Web page layout by drawing elements
to represent text headings, graphics, and other graphic design elements.
The program then generates a dummy Web page based on this layout, and
displays it in a browser. The designer can attach actual content to the
layout by selecting text files and graphics and associating them with the
elements of the Web page sketch. WebStyler then produces the page
layout with actual content.

3 R'S OF DRAWING AND DESIGN COMPUTATION 19

Figure 20. WebStyler generates Web pages from sketched layouts.

3. Discussion and Future Work

We have presented a raft of projects all centered on drawing in design.
Individually, they explore topics from knowledge capture to visual
analogy to simulating and evaluating performance. Taken together, the
projects suggest various roles and uses for drawing, and ways of supporting
these roles computationally. The specific computational support ranges
from intelligent systems to management of informally expressed design
rationale and annotations.

3.1 EXPERTISE IN MANAGING DESIGN PROCESS

The bulk of our efforts so far have dealt with the integration of design
knowledge and the medium of drawing, that is, the bottom two ‘layers’ in
the diagram of figure 1. The top layer, expertise in managing design
process, arguably represents the most fundamental question in the theory
and methods of designing: how do designers decide what to work on,
when, in the course of doing a design project? Apart from what designers
know about their particular domain, what ‘control’ expertise do they
exercise in deciding how to devote their efforts? And what kinds of
computational support might aid in applying this control expertise?

The “Right Tool at the Right Time” project looked at whether
monitoring designers’ drawing acts could reveal useful information about
their current purposes (Do 1998). Specifically, the project posited that
by monitoring an architect’s drawing one might plausibly infer whether
the designer was working on a spatial arrangement task, on resolving a
lighting problem, or on calculating costs. Through a series of studies we
found that designers (and students) could reliably infer task from drawing,
and that specific drawing symbols and configurations were good predictors
of task intentions. We then constructed the Right Tool Right Time

20 M.D. GROSS AND E. Y-L DO

Manager. This program watches over the designer’s sketches and—when
it recognizes a symbol belonging to a specific subtask domain such as
lighting or cost estimating, it proffers a supporting application (e.g., a
lighting advisor or a cost calculator).

Although it only considers a small piece of the design expertise
problem (what is the designer working on and what tools might be
appropriate?) the Right Tool at the Right Time project does illustrate
the possible relationship between design drawing and questions of
expertise. Although one can—conceptually—distinguish the use of media,
the application of knowledge, and the exercise expertise, in design
practice the three are often intertwined.

3.2 OTHER MEDIA (GESTURE, COLLAGE, PHYSICAL MODELS)

We have taken a drawing-centered view of designing, focusing on the
roles that drawing plays in design, the activities that designers do with
drawings, and the ways in which computational tools might support those
activities. However, we recognize that real-world designing is much
richer. Designers employ other media as well in the course of designing,
for example, physical models, collages, text, speech, drawing, and gesture
interaction. In other, related, projects we have built systems to support
the use of these media for designing, and we plan future work to integrate
these efforts into our drawing centered model of design.

Figure 22. Software to support the Three R's of Design Drawing.

Acknowledgements

This research was supported in part by the National Science Foundation under
Grants IIS-96-19856 and IIS-00-96138. The views and findings contained in this
material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

3 R'S OF DRAWING AND DESIGN COMPUTATION 21

References

Contero González, M., F. Naya Sanchis, et al. (2003). CIGRO: A Minimal Instruction Set
Calligraphic Interface for Sketch-Based Modelling. Computational Science and
Its Applications - ICCSA 2003 . V. Kuma and P. L'Ecuyer. Springer.

Cross, N., H. Christiaans, et al., Eds. (1996). Analyzing Design Activity . New York, Wiley.

Davis, R. (2002). Sketch Understanding in design: Overview of Work at the MIT AI Lab.
Sketch Understanding, AAAI Symposium . R. Davis, J. Landay and T. F.

Stahovich., American Association for Artificial Intelligence: 24-31.

Do, E. Y.-L. (1998). The Right Tool at the Right Time: Investigation of Freehand Drawing
as an Interface to Knowledge Based Design Tools, Georgia Institute of
Technology.

Do, E. Y.-L. (2002). "Drawing Marks, Acts, and Reacts, toward a computational sketching
interface for architectural design." AIEDAM, Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 16(3): 149-171.

Do, E. Y.-L. and M. D. Gross (1997). Tools for visual and spatial analysis of CAD models.
Computer Assisted Architectural Design Futures ‘97 . R. Junge. Dordrecht,

Kluwer Academic Publishers: 189-202.

Do, E. Y.-L., M. D. Gross, et al. (1999). Drawing and Design Intentions -- an Investigation
of freehand drawing conventions in design . Design Thinking Research

Symposium, Cambridge MA.

Falkenhainer, B., K. D. Forbus, et al. (1990). "The Structure Mapping Engine." Artificial
Intelligence 41(1): 1-63.

Fish, J. and S. Scrivener (1990). "Amplifying the Mind's Eye: Sketching and Visual
Cognition." Leonardo 23(1): 117-126.

Gaver, W. W., J. Beaver, et al. (2003). Ambiguity as a Resource for Design. Conference on
Human Factors (CHI 2003) . Fort Lauderdale, FL, ACM: 233-240.

Goldschmidt, G. (1994). Visual Analogy in Design. Cybernetics and Systems '94 , . R.

Trappl. Singapore, World Scientific: 507-514.

Gross, M. D. (1994). Stretch-A-Sketch, a Dynamic Diagrammer. Proceedings of the IEEE
Symposium on Visual Languages '94 . A. Ambler, IEEE Press: 232-238.

Gross, M. D. (1996). "The Electronic Cocktail Napkin - working with diagrams." Design
Studies 17(1): 53-70.

Gross, M. D. (2001). Emergence in a Recognition Based Drawing Interface,. Visual and
Spatial Reasoning II . B. T. J. Gero, T. Purcell. Sydney Australia, Key Centre for

Design Cognition and Computing: 51-65.

Gross, M. D. and E. Y.-L. Do (1995). Shape Based Reminding in Creative Design. Global
Design Studio: Computer Aided Architectural Design Futures '95 . M. Tan and

R. Teh. Singapore. 2: 1-11.

Gross, M. D. and E. Y.-L. Do (1996). Ambiguous Intentions. , ACM Symposium on User
Interface Software and Technology (UIST '96) . Seattle, WA:183-192.

Gross, M. D., E. Y.-L. Do, et al. (2001). The Design Amanuensis : an Instrument for
Multimodal Design Capture. Proceedings Computer Aided Architectural Design
Futures 2001 . de Vries, . v. Leeuwen and Achten.., Kluwer : 1-13.

22 M.D. GROSS AND E. Y-L DO

Gross, M. D., J. Lewin, E, Do, K. Kuczun, and A. Warmack (1996). Drawing as an Interface
to Knowledge Based Design, Colorado Advanced Software Institute.

Gross, M. D., C. Zimring, et al. (1994). Using Diagrams to Access a Case Base of
Architectural Designs. AI in Design '94 . J. Gero. Lausanne, Kluwer: 129-144.

Igarashi, T. and J. F. Hughes (2001). A Suggestive Interface for 3D Drawing. Symposium
on User Interface Software and Technology (UIST) ACM : 173-181.

Jung, T., E. Do, et al. (2002). Sketching Annotations in 3D on the Web . ACM Conference

on Human Factors (SIGCHI), Minneapolis, ACM .

Kuczun, K. and M. D. Gross (1997). Local Area Network Tools and Tasks. ACM
Conference on Designing Interactive Systems 1997 . Amsterdam: 215-221.

Kurtoglu, T. and T. F. Stahovich (2002). Interpreting Schematic Sketches Using Physical
Reasoning. AAAI Spring Symposium on Sketch Understanding . R. Davis, J.

Landay and T. Stahovich. Menlo Park, CA, AAAI Press: 78-85.

Landay, J. a. M. B. (2001). "Sketching Interfaces: Toward More Human Interface Design."
IEEE Computer : 56-64.

Leclercq, P. and R. Juchmes (2002). "The Absent Interface In Design Engineering."
Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI
EDAM) 16(3): 219 - 227.

Mankoff, J., S. E. Hudson, et al. (2000). Providing Integrated Toolkit-Level Support for
Ambiguity in Recognition-Based Interfaces. Proceedings of the Human Factors
in Computing (SIGCHI) Conference . The Hague, ACM Press: 368-375.

Oh, Y., M. D. Gross, et al. (2004). Design Evaluator: critiquing freehand sketches.
Generative Computer Aided Design Systems . Pittsburgh, Carnegie Mellon

University: in review.

Oviatt, S. and P. Cohen (2000). "Multimodal Interfaces That Process What Comes
Naturally." Communications of the ACM 43(3): 45-53.

Qian, D. and M. D. Gross (1999). Collaborative Design with NetDraw. Computer Aided
Architectural Design Futures ’99 . G. Augenbroe and C. Eastman , Kluwer.

Saund, E., D. Fleet, et al. (2003). Perceptually-Supported Image Editing of Text and
Graphics. ACM conference on User Interface Software Technology . (UIST)

Saund, E. and T. P. Moran (1994). A Perceptually-Supported Sketch Editor . ACM

Symposium on User Interface Software and Technology, (UIST) .

Schon, D. A., and Wiggins, G. (1992). "Kinds of Seeing and their functions in designing."
Design Studies 13(#2): 135-156.

Sutherland, I. (1963). Sketchpad - a Graphical Man-Machine Interface, M.I.T.
Suwa, M. and B. Tversky (1997). "What architects and students perceive in their

sketches: A protocol analysis." Design Studies (18): 385-403.

Tversky, B. (2002). What do Sketches say about Thinking? AAAI Spring Symposium
Series -- Sketch Understanding . T. Stahovich, J. Landay and R. Davis.

Ullman, D., S. Wood, et al. (1990). "The Importance of Drawing in the Mechanical Design
Process." Computers and Graphics 14(2): 263-274.

