

ESPRESSOCAD

A System to Support the Design of Dynamic Structure Configurations

MICHAEL PHILETUS WELLER1, ELLEN YI-LUEN DO1 AND
MARK D GROSS1
1Design Machine Group, University of Washington

Abstract. EspressoCAD is a computer assisted design system created
to support the design of structures composed of our modular robotic
building blocks, Espresso Blocks. EspressoCAD�s interface allows
designers to manipulate individual blocks. By recording these
manipulations designers can create actions to control the behavior of
groups of blocks. The current version is implemented as an AutoCAD
plugin written in Visual Basic.

1. Introduction

The class of modular robots known as �crystalline modules� (Rus and Vona
2001) promises to provide the building blocks for a new design medium. A
group of these robotic blocks can take any arbitrary shape to a resolution
limited by the size of a one-block voxel, and then autonomously transition to
another arbitrary shape (Rus and Vona 2001). Applying this technology to
building blocks will allow designers to create dynamic objects that shift
form through time. But specifying these dynamic forms will require new
design tools.

We first attempted to use crystalline modules as building blocks with our
Espresso Blocks (Weller 2003) architectural building system. EspressoCAD
is a computer assisted design system we built to support the design of
configurations for structures composed of Espresso Blocks. Dynamic
structures composed of these blocks could be used, for example, to create
urban live/work spaces that would adopt different configurations throughout
the day. A live/work espresso stand built with Espresso Blocks could
function as a coffee shop during the day and as an apartment at night.
Espresso Blocks could also be airlifted to support quickly deployable
shelters in hostile and distant places, or be launched into orbit to provide a
reconfigurable structure for satellites and space stations.

 M. P. WELLER, E. Y.-L. DO, M. D. GROSS

Designing these dynamic structures will require CAD systems with new
capabilities. Such a system must at least:

1) support the design and visualization of a structure�s transition from
one form to another

2) help designers manage the new degrees of freedom allowed by a
dynamic structure by modeling the constraints of the structural
system

3) output a file that can be loaded into a structure and used to transform
it into the designed form

In this paper we present EspressoCAD, our first attempt to build a system
that supports this minimal specification in order to demonstrate the potential
power of dynamic structures. As EspressoCAD is designed specifically to
support the design of structures composed of Espresso Blocks, we will begin
with a brief description of the Espresso Block module in section two. In the
third section we will explain how a designer can use EspressoCAD to design
configurations for a group of blocks. We give the details of EspressoCAD�s
implementation in the fourth section. In the fifth section we outline our plans
for our next generation of building blocks, Cocoa Blocks, and our system to
support the design of local rulesets for Cocoa Blocks, CocoaCAD.

2. Espresso Blocks

Figure 1: Prototype Espresso Block module

Our Espresso Block module (Figure 1) is a crystalline modular robot similar
to the systems of Rus and Vona (2001) and PARC (Suh, Homans and Yim

 ESPRESSOCAD: A System to Support the Design of Dynamic Structure Configurations

2001), but on an architectural scale. While other modular robotics systems
have focused on creating very small modules to support autonomous
locomotive agents (Rus et al. 2002), Espresso Blocks are objects on the scale
of a brick or concrete masonry unit, and are designed to stack themselves to
create load-bearing structures (Weller 2003). Our current prototype block is
15cm wide with the faces contracted and 30cm wide with the faces expanded
(Figure 2).

Figure 2: Block module dimensions

Figure 3 shows a section diagram of a block module. Three faces of each
block are male, with a switching magnet array latch. The opposite three
faces are female, with sheet metal dishes to receive the magnet arrays. Each
face is mounted on an arm that fits into a tubular housing in the core of the
block. We are currently experimenting with a rack and pinion drive to
extend and retract the arms. When the arms of two adjacent blocks are
extended towards each other, the switching magnet array from one block fits
into the metal dish of the next block, latching them together. To unlatch
from each other, the switching magnet array is switched to its 'off'
configuration directing its magnetic field inwards away from the metal dish
and both faces are retracted (Weller 2003).

 M. P. WELLER, E. Y.-L. DO, M. D. GROSS

Figure 3: Block module section diagram

Pairs of Espresso Blocks move with an inchworm-like motion (Figure 4).
One block, the free block, unlatches itself from all blocks that would
constrict its movement, while the other block, the anchor block, remains
latched to the rest of the structure. Both blocks extend their linked faces,
pushing the free block across a one-block wide space where it latches to an
adjacent block. To continue moving the anchor block can disengage from
neighboring constrictive blocks to become the free block and both blocks
retract their faces to bring the two blocks back together, shifted by one
space. As Rus and Vona (2001) show, by repeating these steps a group of
blocks can take any arbitrary form.

Figure 4: Block inchworm motion

Because a building composed of modular robots would be able to
autonomously reconfigure itself into a new shape, it can be designed as a
series of dynamically linked forms and behaviors rather than a single static

 ESPRESSOCAD: A System to Support the Design of Dynamic Structure Configurations

3D shape. One example of such a dynamic form is the live/work espresso
stand (Weller 2003). This structure would erect itself into a one-room space
from several pallets of blocks delivered to the building site. With a remote
control (Figure 5), the stand�s occupant could cycle through different forms,
from an espresso stand in the morning to a kitchen and dining room in the
afternoon, and then into a bedroom at night. To transition from one space to
another the blocks would not only reconfigure architectural elements such as
walls, counters and windows, but would also form furnishings for the room
and switch items such as the espresso machine and alarm clock in and out of
storage as appropriate.

Figure 5: Using a palm pilot as a remote control

The live/work espresso stand�s occupant would control the transition
between forms by selecting and playing actions designed in EspressoCAD.
With a remote control that could be a palm pilot or cell phone with the block
control software loaded onto it, the occupant would select which area of the
structure to reconfigure. After the occupant selects the desired action from a
list, the blocks that will be involved in the transition light up green. Once the
selection is confirmed, the blocks turn red and begin moving. When each
block reaches its final position its light turns off to signal when the transition
has completed.

3. Designing with EspressoCAD

Unlike other CAD programs that create drawings to guide contractors or 3D
data to send to a rapid prototyper, EspressoCAD produces actions to be
executed by groups of Espresso Blocks. The design interface (Figure 6)
features a 3D view of the group of block modules and a control panel.

 M. P. WELLER, E. Y.-L. DO, M. D. GROSS

EspressoCAD represents block modules with a more abstracted form, a cube
with male and female arms extending from opposite faces. Actions can be
created from scratch by adding new blocks to the design space and then
recording their manipulation, or existing actions can be opened, played back
and extended. Completed actions can be saved and loaded onto a remote
control, or uploaded onto a website to be shared with others.

Figure 6: EspressoCAD screen shot

To help designers manage the additional degree of freedom allowed by
change through time EspressoCAD models the constraints of the block
modules. The control panel (Figure 7) has three tabs: the controls tab, the
actions tab and the record tab. The controls tab presents the designer with a
set of manipulations that can be played on the currently selected block and
allows selection to be passed to an adjacent block. When a block is selected,
it is highlighted on the screen in red, and control functions that are
unavailable to that block are grayed out.

 ESPRESSOCAD: A System to Support the Design of Dynamic Structure Configurations

Figure 7: EspressoCAD control panel

There are an identical set of buttons for each axis of the selected block.
The buttons on the left side control the male (green) face and the buttons on
the right control the female (yellow) face. The arrow buttons immediately
adjacent to the axis label extend and retract that face of the block. When the
face of one block is extended to the face of an adjacent block, they
automatically latch together. When the face of the selected block is latched
to another block, the �*� button, which unlatches the face from the adjacent
block, becomes active. If the space adjacent to the face is unoccupied, the
�+� button is active and allows a new block to be added to the design space
latched to that face of the selected block. If there is another block adjacent to
the face the �<� button is active and allows selection to be passed to the
adjacent block.

While EspressoCAD does not impose physical constraints such as
gravity, it imposes the block freedom constraint to make it possible to show
that the blocks' limited range of motion does not preclude the transformation
between two configurations. Figure 8 shows the selected block marked with
an �x� attached to another block that is circled. If the selected block extends
or retracts the arm connected to the circled block, and the circled block is
free to move, it moves along with the arm. If the circled block attached to the
arm is not free to move, but the selected block is, then the selected block
moves and the circled block stays in place.

 M. P. WELLER, E. Y.-L. DO, M. D. GROSS

Figure 8: Block freedom conditions

The circled block is free to move if it is not attached to any blocks
besides the selected block, or is only attached to one other block besides the
selected block, and that other block is only attached to the circled block. If
an arm of the selected block is extended or retracted, and both the selected
block and the block the arm is attached to are not free, nothing moves, and
an error message is printed to the message window. If an attempt is made to
extend or retract an arm past its maximum or minimum bounds, the arm does
not move and �can�t move arm that far� is printed to the error window.

The record tab allows a new action to be created. Once a name for the
action is entered, manipulations of the blocks are recorded to the action.
After an action is recorded and saved, it can be placed on the actions tab. To
add actions to a remote control, the actions tab would be downloaded onto
the remote control device. By arranging a set of actions on the actions tab
and playing them back in EspressoCAD, a designer can simulate the control
of a block structure before attempting to play the actions on a group of
blocks.

To show that a block module�s limited range of motion is sufficient to
allow a block structure to reconfigure itself, we designed the pallet-to-wall
action (Figure 9). This action transitions a pile of blocks on a pallet into a
two-block thick wall. The action only transitions one layer of the pile at a
time, so by repeating the action four times an entire pallet could be
transitioned. Starting with the far right column of a 4 x 4 pile, the blocks
inchworm up and over to the left, until they form a 2 x 8 tower. This is a
relatively simple action, but future dynamic structure configuration design
systems will feature tools to manage more complex transitions.

 ESPRESSOCAD: A System to Support the Design of Dynamic Structure Configurations

Figure 9: Pallet-to-wall action

4. EspressoCAD Implementation

EspressoCAD is built as an AutoCAD plugin to take advantage of its
rendering engine and viewing controls. We initially explored writing the
plugin in AutoLISP, but decided to use Visual Basic instead as the
application protocol interface for 3D objects appeared much more
straightforward. EspressoCAD is implemented as a series of objects. The
world object holds a list of block objects, an associative array of the
positions of all of the blocks, and a control panel object. Each block object
contains six arm objects, one for each face. Pressing a button on the control
panel routes the command through the world object to the current block
object.

EspressoCAD manages locational relationships between blocks such as
adjacency, latching and collisions by maintaining a multi-dimensional
associative array of the positions of every block (Figure 10). The top level of
the associative array contains an index of all of the x positions currently
occupied by a block. Each x position contains a list of all the y positions
occupied by blocks at that x coordinate. Each y position has a list of z
positions occupied by blocks at those x, y coordinates. And each z position
has a reference to the block object that occupies that position.

 M. P. WELLER, E. Y.-L. DO, M. D. GROSS

Figure 10: Block position associative array structure

The psuedo-code to test whether there is a block within a bounding box is
shown in Figure 11. The 'blocks_within_bounding_box' function takes the
minimum and maximum points of the bounding box as arguments. First it
looks whether there are any position keys on the x position list that fall
within the bounding box�s x coordinates. If there are not, the test returns an
empty list. If there are position entries within the bounding box�s x
coordinates, each of those entries� y position lists are tested for objects
within the bounding box�s y coordinates. Again, if there are no entries, the
test returns an empty list. If there are entries, each of the entries� z position
lists are tested for entries within the bounding box�s z coordinates. If there
are any entries found, the test returns a list of references to the blocks found
at each entry. Each entry should have just one block because blocks are not
allowed to overlap.
define blocks_within_bounding_box(min, max):
 block_list = [] // list of blocks to return
 // check x position list
 for(x = min.x, x <= max.x, x++):
 if(position_array.x_list.has_key(x)):
 // check y position list
 y_list = position_array.x_list{x}
 for(y = min.y, y <= max.y, y++):
 if(y_list.has_key(y)):
 // check z position list
 z_list = y_list{y}
 for(z = min.z, z <= max.z, z++):
 if(z_list.has_key(z)):
 block_list.append(z_list{z})
 return block_list

Figure 11: Psuedo-code to test for a block within a bounding box

 ESPRESSOCAD: A System to Support the Design of Dynamic Structure Configurations

Every time an unlatched arm of a block is extended it checks to see
whether it has latched to another block. To find out it asks the world object
if there is another block within one block length. If there is a block within
one block length, the world object returns a reference to it. The arm being
extended then asks the adjacent block for its position and the extension of
the arm facing it. If the combined extension of the two arms bridges the gap
between the blocks they are latched together. Otherwise the arm is simply
extended.

If the arm being extended is latched to another block the selected block
calls the block to which the arm is latched to determine if it is free (Figure
8). The freedom constraint is an approximation of the physical constraints of
an actual block structure. The psuedo-code for determining whether a block
is free is shown in figure 12:
define is_free(block):
 latched_list = [] // blocks latched to this block
 // check which blocks arms are latched to
 for each arm in block.arm_list:
 if(arm.is_latched()):
 // add blocks besides selected block to list
 if(arm.latched_to_block() != selected_block):
 latched_list.append(arm.latched_to_block())
 // check the length of the latched_to list
 if(latched_list.length() == 0):
 // block is only latched to selected block
 return true
 else if(latched_list.length() > 1):
 // block is latched to at least two other blocks
 return false
 else:
 // block is latched to one other block
 for each arm in latched_list[0].arm_list:
 if(arm.is_latched()):
 if(arm.latched_to_block() != block):
 // other block is latched to more than one
 // block
 return false
 // other block is not latched to more than one
 // block
 return true

Figure 12: Psuedo-code to test whether a block is free

The 'is_free' function takes a block as an argument. It checks each arm of
the block passed to it to see if it is latched to a block besides the selected
block. If it is the block to which the arm is latched is added to a list of
blocks, the 'latched_list'. If the block given as the argument is not latched to
any blocks besides the selected block, it is free and returns true. If it is
latched to more than one block besides the selected block, it is not free and

 M. P. WELLER, E. Y.-L. DO, M. D. GROSS

returns false. If it is latched to only one other block it checks that block to
see if it is attached to any other blocks. If it is it returns false, otherwise it
returns true.

If the block is free it calls the world object to see if the space that it is
going to move into is occupied by any other blocks. If the space is free the
world object updates the block's position in the position array and tells both
the arm and the block to which it is latched to move. If there is another block
in the way, nothing moves and an error message is printed to the control
panel's message window.

When the record button is pressed, it creates a function definition in a
new file and tells the world object to record actions. Every time a button is
pressed on the control panel the function call is written to the file. To add the
function to the actions tab, a new button is added to the tab and linked to the
new function.

5. Future Work: CocoaCAD

EspressoCAD demonstrates several features to support the design of
dynamic objects, including modeling the design constraints of a block
module and supporting the creation of actions. But managing complex
inhabitable spaces will require design tools that can operate at a higher level
than pushing individual blocks around. To take advantage of the distributed
parallel computing power of the blocks and speed up the reconfiguration
process, instead of manually planning each block�s path beforehand it would
be more effective to broadcast the desired configuration or behavior to the
blocks and let them work out the transition. A strategy to achieve this effect
by using local rulesets to control block behavior is proposed by Jones and
Mataric (2003). A design program takes a desired goal shape and generates
local rulesets to be loaded onto the individual blocks. In a simulation, each
block evaluates its local conditions and takes the actions required to satisfy
its ruleset, more or less producing the desired goal shape without inter-block
coordination. Shen, Salemi and Will (2002) switch their chain modules
between locomotive gaits by sending �hormone� messages to cycle the
individual modules between rulesets. For example, a system composed of a
chain of several modules arranged in a loop would have all of its modules
using the �roll� ruleset, producing a rolling behavior in the entire system. By
broadcasting a message telling all of the modules to switch to the �crawl�
ruleset, the system transitions into a snake-like shape and commences
crawling forwards.

5.1. COCOA BLOCKS

We are currently working on a children�s building block kit to support
ruleset design education, Cocoa Blocks. This kit will have three parts, a 3D

 ESPRESSOCAD: A System to Support the Design of Dynamic Structure Configurations

modeling and simulation application to support ruleset design, a remote
control to broadcast ruleset changes to the blocks, and the blocks
themselves. The small pile of six inch blocks that comes with the kit will be
suitable for designing a piece of furniture, or experimenting with different
gaits to move around and over obstacles.

5.2. DESIGNING WITH COCOACAD

Instead of designing actions that explicitly list every step every block should
take to transition to a goal shape, CocoaCAD will support the design of local
rulesets that lead to the emergence of a desired goal shape from any arbitrary
starting shape. In CocoaCAD goal shapes will be designed on an interface
similar to EspressoCAD�s, but instead of recording the manipulations as an
action it will generate rulesets to create the shape. CocoaCAD�s ruleset
editing interface will then visually show the effect of manipulating and
editing the generated ruleset.

A set of rulesets output by CocoaCAD would then be broadcast to the
Cocoa Blocks. The local rules will tell the block to evaluate the position of
immediately adjacent blocks and obstacles, and specify an action for the
block to take if the local conditions match a rule. All blocks would have
identical lists of local rulesets, but would select one ruleset from the list
depending on the state of the block. A rule can tell a block to switch states to
a different ruleset in the list. Rulesets could be designed to converge on one
goal shape and then wait for a command to switch to a new form, or they
could be used to create a dynamic form that would respond automatically to
changes in the environment.

5.3. COCOACAD IMPLEMENTATION

We are building CocoaCAD as a freestanding python application to allow
the more intensive processing that will be required to generate rulesets and
simulate their effect on block behavior. The rulesets are being written in
XML so that they will be able to be downloaded onto blocks and run, posted
on websites, or sent over email.

We hope that deploying these block kits in an educational setting will
produce valuable feedback on the ruleset design interface, to allow us to
evaluate which features are most useful and to identify design obstacles that
still need to be addressed. At the same time we hope Cocoa Blocks and
CocoaCAD will begin to cultivate designers who are comfortable creating in
this new design medium.

 M. P. WELLER, E. Y.-L. DO, M. D. GROSS

References

Butler Z, K Kotay, D Rus and K Tomita: 2001, Cellular Automata for Decentralized Control
of Self-Reconfigurable Robots in Proceedings of the IEEE Int. Conf. on Robotics and
Automation (ICRA 2001), workshop on Modular Self-Reconfigurable Robots, Seoul,
Korea.

Jones C and M Mataric: 2003, From Local to Global Behavior in Intelligent Self-Assembly in
Proceedings of the IEEE International conference on Robotics and Automation (ICRA
2003), Taipei, Taiwan. 721-726.

Rus D and M Vona: 2001, Crystalline Robots: Self-reconfiguration with Compressible Unit
Modules in Autonomous Robots (10)1, January. 107-124.

Rus D, Z Butler, K Kotay and M Vona: 2002, Self-reconfiguring Robots in Communications
of the ACM 45(3), March. 39-45.

Shen W, B Salemi and P Will: 2002, Hormone-Inspired Adaptive Communication and
Distributed Control for CONRO Self-Reconfigurable Robots in IEEE Transactions on
Robotics and Automation 18(5), October. 700-712.

Suh J, S Homans, M Yim: 2001, Design Tradeoffs for Modular Self-Reconfigurable Robots:
The Mechanical Design of Telecubes (A Case Study in Progress) in Proceedings of the
IEEE Intl. Conf. on Robotics and Automation (ICRA 2001) Workshop on Self-
reconfigurable Robots, Seoul, Korea.

Weller M: 2003, Espresso Blocks: Self-Configuring Building Blocks, Master of Architecture
Thesis, University of Washington, Seattle.

