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ABSTRACT

Hand drawn diagrams are essential tools for
thinking and communicating in the early phases
of design, yet computer based drawing tools
support diagramming and sketching only poorly.
Key components of computational support for
early design include recognition, interpretation,
and management of diagrams   The paper describes
the motivation for, implementation of, and initial
experience with the "computer as cocktail
napkin" project, a design environment based on
diagrams.  It explains low level recognition of
glyphs, construction of higher-level recognizers,
and routines for managing diagrams in the
cocktail napkin prototype.

1. INTRODUCTION

In the early phases of design in almost every
domain diagrams play a key role.  Ideas tend to be
vague and commitments low, unsuited to and
unworthy of the effort and precision that most
computer-based drawing tools demand.  Instead,
design arguments unfold on cocktail napkins and
the backs of envelopes where the medium supports
and reflects the rough and quick quality of
thought.   The "computer as cocktail napkin"
project aims to support early design in an
environment for recognizing, interpreting, and
managing hand-drawn diagrams and sketches.
Designers need to sketch and diagram, at least in
the early stages of designing; they will do it with
or without a computer.

This project aims to build programs that can
recognize the elements of a diagram and interpret

them in the context of particular design domains
such as building floor plans, mechanical devices,
or electric circuits.  This would enable a designer
to apply computational tools for symbolic and
numerical analysis such as critiquing,
simulation, visualization, and retrieval of
relevant cases.  Without a diagram interpreter,
these tools must wait until the design has
developed to where it is worth the effort of
entering it into the machine.  By providing a
computational environment for early
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design -- in the way that designers are
accustomed to doing it -- we will be able to bring
these tools to bear at a time when they can have
the least cost and the most impact.

The cocktail napkin project falls at the
intersection of four diverse research areas: sketch
recognition and parsing of visual languages [9, 10,
20, 21] diagrammatic representations in problem-
solving [3], collaborative work and shared drawing
spaces [2, 12], and intelligent computer aids for
design [6].  Here we focus on recognition and
interpretation of hand-drawn input and its
application in a computer environment for design,
touching only briefly on the other topics.

Sketch recognition and inference was a major
focus of the MIT Architecture Machine Group in
the early 1970's [17], yet many questions raised
there -- e.g. integration of symbols and sketches,
interpretation of speed and pressure data and line
overtracing, use of tracing paper --  remain
unexplored.  Lakin's "electronic design notebook"
and his work on v m a c s  has identified key issues
for visual language in design, for example, the
inappropriateness of syntax-driven drawing, the
performance nature of early design, and the
inevitable demand for symbolic processing later
in designing [15].  Futrelle's group  also deals
with machine recognition of diagrams; however

they are more interested in formal diagrams in
published technical articles and not the hand-
drawn diagrams made during designing [5].

Other algorithms for recognizing the low-level
glyphs have been developed [1, 18]; the chief
advantages of the technique described here are
that it is trainable, handles multi-stroke glyphs,
and is simple to implement.  The approach taken
here diverges from the notion of "visual language"
employed by Wittenburg and Weitzman [20],
Golin, [9] and Helm [10] in that those approaches
assume that input data will be a well-formed
diagram in a grammatical, hence parsable, visual
language (although Wittenburg’s predictive
parsing approach allows the recognition of
partially drawn diagrams). Similarly, Zhao's
hand-drawn diagram recognizer [21] employs a
two-tier recognition strategy like ours, but is
concerned with input for syntax-directed editors.
Although we hope to extract parts of diagrams
that match certain syntactic descriptions, we
cannot expect design diagrams to be "well-
formed".  Therefore the cocktail napkin approach
tries to take advantage of recognition techniques
used in parsing visual languages, while allowing
that diagrams in design may be intentionally
ambiguous, arbitrary, and vague.

Figure 1:  The cocktail napkin prototype.

The assertion that diagrams are more appropriate
for early design is based largely on tradition (it's
been done that way for centuries), and intuition
(it makes sense).  However, some evidence
supports the claim.  A well-known article by
Larkin and Simon explored advantages of
diagrammatic representations for certain kinds of
reasoning [16].  They argue that diagrams rely on

"perceptual inferences, which are extremely easy
for humans," grouping information that is to be
used together, thus limiting both the search for
relevant information and the need for symbolic
labels.  In another study, Goel compared designers
using a pencil with designers using MacDraw to
carry out tasks in graphic design, industrial
design, and architectural design [7].  Goel found
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that designers using a pencil generated more
diverse alternatives whereas those using the
structured drawing program tended to latch on
early to a single alternative and develop it.
Goldschmidt, studying the use of sketches in
architectural design, argues that a serial
sketching process is an essential part of design
problem solving [8].

Figure 1 shows the screen of our cocktail napkin
prototype,  a diagram recognizer built in
Macintosh Common Lisp to explore these ideas.  It
uses a WACOM "SD" series digitizing tablet and
pen for input and it works interactively in real
time on the Powerbook 160, MacIIfx, and Quadra
models.   The following sections of the paper
describe first the low-level recognition of drawn
symbols and spatial relations among them; second,
how a designer constructs higher-level
recognizers that identify arrangements of symbols
satisfying a given set of spatial relations; and
finally, some initial efforts toward managing the
hand drawn diagrams.

2. RECOGNITION

2.1 Low Level Recognition

The low-level  recognizer has been trained with a
set of commonly used components of diagrams (e.g.
circles, boxes, arrows, letters) and it identifies
input glyphs by matching them against its
training set.  Most diagrams seem to be made from

a small universe of symbols* so recognition of
low-level glyphs need not resolve among a large
number of candidates.  The algorithm recognizes
symbols in real time from a library of about 50.
The low level recognizer proceeds in two steps.
First, a raw-glyph parser examines coordinate
and pressure data input from the pen and
identifies strokes, corners, and shape.  Second,
the resulting profile is matched against a stored
library of known glyphs.

* An informal survey of approximately 50
blackboards in our university's departments of
chemistry, physics, mechanical engineering,
geography, and architecture lends weight to this
hunch .

The tablet driver delivers a sequence of x,y points
and pressures sampled from the tablet at 2400
baud, as well as pen-up/down data.  A glyph is
deemed finished when the pen is off the pad for
longer than 1/5 second.  (This and other
recognition parameters can be adjusted by the
user; however if the end-of-glyph time-out is less
than about 1/8 second it is difficult to execute
multi-stroke glyphs.)   If more than one pen is
used (as when two users share the drawing pad)
the tablet driver also identifies which pen was
used to make the glyph.
The raw-glyph parser examines the tablet input
data.  It counts strokes and it identifies corners
where the pen slowed down and the tablet sampled
several points close together -- this also finds
line crossings.  The drawing sequence information
makes trivial certain tasks, such as grouping
together the several strokes of a single glyph, that
are much more difficult in off-line analysis of
finished drawings.

The raw-glyph parser identifies the input glyph's
shape by overlaying a 3x3 grid with squares
numbered 1-9 on its bounding box, determining
the sequence of grid squares that the pen moved
through to draw the glyph.  This sequence is used
as a lookup key in a hash table of previously
trained glyphs.  The 3x3 grid seems optimal for
the shape match.  A 2x2 grid is too coarse and
results in many collisions; 4x4 is too fine and
requires large training sets.  Obviously, stroke
order is essential to this scheme, and the program
must be trained, or at least the training must be
adjusted, on a per-user basis.  To work for all
users the program must be trained to recognize
the various ways each glyph might be drawn.  But
van Sommers' studies of drawing and cognition
suggest that different drawers show remarkable
consistency in stroke order [19], so idiosyncrasy
in drawing simple glyphs may not be a serious
problem.

Figure 2:  Training set for the "letter-C."  The
circle indicates the glyph's starting point.  The
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grid is scaled to the bounding box of the input
g lyph.

The 3x3 grid is inscribed in the input glyph's
bounding box, so the algorithm works for all sizes
and aspect ratios.  It recognizes a tall, narrow A
as well as a short, wide one.  By permuting the
numbering scheme of grid squares the algorithm
can recognize 90 degree rotations, reflections of
glyphs, and glyphs drawn backwards.  Rotation
between 90 degree multiples is covered by
training the program with glyphs drawn at an
angle.  Figure 2 shows a set of grid square
sequences for the glyph "letter-C,"  indicating
seven different ways the program has seen that
glyph drawn.

EXACT SHAPE
MATCH

?

NUMBER OF 
MATCHES

?

RETURN
IT.

ELIMINATE CANDIDATES
 WITH

WRONG # OF CORNERS,
STROKES, ASPECT RATIO

RETURN 
REMAINING 

CANDIDATE(S)

exactly one 
match.yes

several matches.no match.

TRY MATCHING
TRANSFORMATIONS

(ROTATE, REFLECT, etc)

exactly
 one match

SHAPE MATCH, 
ALLOWING 

SLIGHT ERROR.

no match

NUMBER OF 
MATCHES

?

several matches.

RETURN 
CANDIDATE.

NUMBER OF 
MATCHES

?

exactly
 one match

several matches.

no match

RETURN "UNKNOWN"

Figure 3:  Steps in the low level recognizer.

Often two or more glyphs have been trained with
the same sequence of grid squares and the shape
lookup returns more than one candidate.  For
example, the sequence of grid squares may not
distinguish 'U' from 'V' or 'Circle' from 'Box'.
Then, a second low-level recognition step attempts
to resolve the ambiguity by matching the number
of strokes, corners, sizes, aspect ratios, and
rotations allowed for each glyph.  On the other
hand, if the initial shape lookup yields no match,
the program relaxes its criteria, allowing a small
difference in the sequence of grid squares that
describes the shape.  The flow chart in figure 3
summarizes the matching procedure.  The low
level recognizer produces an "identified glyph"
structure, shown in figure 4.

Figure 4: The data structure for an identified
glyph includes stroke and corner count, pen path,
and other information.

Even using the strategies described above, the
recognizer may be unable to identify a glyph (for
instance if the glyph has not been trained ) or it
may be unable to determine which of several
glyphs in its training set best matches the new
glyph.  If it cannot identify the glyph, the low-
level recognizer returns "no match"; if it cannot
choose, it returns a list of candidates.  Depending
on switches the program either leaves ambiguous
and unknown glyphs until later or it asks the user
to immediately identify the glyph or resolve the
ambiguity.  Whenever the user resolves an
ambiguity or names an unknown glyph, the
program adds the new example to its training set.
In general, to train the program the user draws
examples of a new glyph and enters a name.  The
average glyph's training set has 13 samples; the
largest set (for the letter A) contains 73 samples.

Figure 5:  Raw glyphs, showing input points,
identified corners, and the scaled 3x3 bounding
box grid. The low level recognizer, unable to
determine the top center glyph a circle or the
letter "O," returned a choice: (CIRCLE O).

2.2 Spatial Relation Predicates

Combined with low level glyph recognition, a set
of binary spatial relations -- predicates on
glyphs -- are building blocks for higher-level
recognition and interpretation. The relations
(such as 'contains,' 'immediately-above,' 'lines-
tee-connect,' 'same-size,' 'overlaps') examine
coordinate data in the raw glyphs, usually just the
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bounding boxes, sometimes also first and last
points.   The program uses the predicates to
produce symbolic descriptions of the elements
and relations in a diagram (figure 6), and to
recognize arrangements of simple glyphs.

Figure 6:  The program produces an analysis of
spatial relations among diagram glyphs.

The spatial predicates are organized according to
various metrics, for example by argument types:
shapes such as circles and boxes overlap, but
lines intersect.  Some are also ordered by
specificity: concentric is more specific than
contains, in turn more specific than overlaps (see
figure 9).   Some relations are exclusive: two
glyphs can be either adjacent, near, or far.  These
organizations of the predicates help make search
more efficient and eliminate redundant
descriptions; if two circles are concentric, the
program need not note that one also contains the
other.  The program can analyze all relations
among all diagram glyphs, a selected subset of
relations, or a subset of glyphs.  For example, we
can ask to view "only adjacency relations," or "all
relations involving boxes and arrows."

2.3  Higher-Level  Recognit ion

The program uses a bottom-up parsing approach to
assemble simple glyphs into higher-level
configurations.   After the low-level recognizer
has tried to identify the glyphs drawn on the
tablet, the higher-level recognizers come into
play.  Higher-level recognition is essentially a
process of graphical search and replace [13, 14].
Each higher-level recognizer matches a specific
configuration of glyphs arranged in certain
spatial relations.  For example,  a "tree-diagrams"
recognizer looks for circles, one above the other,
linked by line segments.  A "rooms" recognizer
looks for words in boxes.  A "poly-lines"
recognizer looks for lines that connect or tee with
another line.  (Figure 7).

Figure 7:  Each higher-level recognizer matches a
specific configuration of glyphs arranged in
certain spatial relations.  For example,
recognizers have been built for tree diagrams,
rooms, and poly-lines.

The higher-level recognizers can be invoked
explicitly by the designer ("identify the rooms in
the diagram"), or they can be slated to run
automatically whenever the program is quiescent,
when the designer pauses after drawing. When a
higher-level recognizer identifies its target
configuration -- a word, a poly-line, a tree-
diagram -- it makes a new compound glyph that
stores the original low-level glyphs as parts.  The
parts can be left in the diagram for other
recognizers to consider as well, or they can be
removed from the diagram by the first recognizer
to use them.  The higher-level recognizers solve a
constraint satisfaction problem over the diagram
glyphs [10, 14]  Each higher level recognizer finds
instances of glyph sets {g1, g2, ... gn} that satisfy
a set of relations ri,j,k where gi and gj are glyphs
and ri,j,[1...k] are binary relations between them.
For example, the 'tree-diagram' recognizer
collects glyph triples (g1 , g2 , g3) such that the
following conjunction of constraints holds:

In other words, the tree recognizer collects sets of
three glyphs such that the first two are circles
and the third is a line; the line connects the two
circles, and one circle is above the other.  The
next version of the program will use constraint
satisfaction for higher-level recognition, based on
an implementation of v. Hentenryck et al.'s arc-
consistency framework [11].  However, because the
number of glyphs in a diagram is small,
exhaustive search has been surprisingly
acceptable for constructing simple higher-level
recognizers .
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Higher-level recognizers can resolve ambiguities
that the low-level recognizer cannot.  For
example, the program has been trained to identify
one glyph as both "Circle" and "Letter O."
Therefore the low-level recognizer, working one
glyph at a time, should always produce a multiple
choice.  Later the higher-level word recognizer
can determine if the circle/letter-O glyph is next
to another letter of approximately the same size.
Then the glyph becomes a "Letter-O".  If instead
the same glyph appears in a tree then the tree-
diagram recognizer declares it to be a "Circle".

2.4  Construct ing  higher- leve l
r e c o g n i z e r s

To specify a search pattern or to construct a new
higher-level recognizer a user begins by selecting
a set of elements in the diagram.  A dialog
displays a textual description of the elements,
their types, and the observed spatial relations,
which are annotated graphically on the diagram
elements as well (figure 8).    The dialog is used to
control graphical search and to define higher-
level recognizers.

Figure 8: The search dialog provides an analysis
of glyph types and relations that the user can
adjust, making descriptions more or less specific,
and deleting unwanted parts of the description.

The user then refines the search pattern by
deleting elements or relations not intended as
part of the search pattern and by making element
types and spatial relations more or less specific.
Figure 9 shows fragments of the "specific-
general" graph that orders spatial relations.

RIGHT-OF

IMMEDIATELY
RIGHT-OF

ADJACENT

IMMEDIATELY
ABOVE

ABOVE

CONCENTRIC

CONTAINS

OVERLAP

"more general than"

Figure 9:  "More-general" relation orders spatial
predicates.  Adjustments made in the search
dialog traverse this graph, to tighten or loosen
descriptions of glyph configurations.

For example, if a user selects as a search pattern
a box with a letter "A" immediately to its right
then the program generates the search pattern of
figure 10a, matching any letter that is
immediately to the right of a box.

Figure 10 (a, b):  The general and specific buttons
in the search dialog are used to adjust a search
pattern.  Pattern at left matches any letter
immediately to right of a box.  Pattern at right
matches a letter-A adjacent to any shape.

Using the "more general" and "more specific"
commands, the user modifies the search pattern to
the one in figure 10b, which  matches only the
letter "A", adjacent to (immediately above, below,
left, or right of) any shape.  The scope of search is
limited to two options: the current diagram, or the
current diagram plus all diagrams in the catalog.
Thus, a search could retrieve (for example) all
floorplan variants with the kitchen adjacent to the
entry or every page with a phone-number written
on it.

Once the user has defined a search pattern, it can
be saved and reused for subsequent searches.  It
can be used to define as a higher-level recognizer,
which replaces occurrences of the search
configuration with a new, compound object, and
added to the list of recognizers that operate
constantly in the background.   Figure 8 shows the
definition of a higher-level-recognizer for
“smileys”.

3. DIAGRAM MANAGEMENT



7

Apart from recognition and interpretation, but
equally essential in design, is the drawing
environment and the management of diagrams.
The cocktail napkin prototype supports selective
rectification, gestural commands, simulated
tracing paper, an on-screen catalog of previously
made diagrams, and a simple two-person shared
drawing space.  Although these are all simple
features, they are the elements of an environment
for designing.

3.1 Select ive Rectif ication

Although once the program has recognized a glyph
it can replace the hand-drawn version with a
"rectified" symbol (e.g.  a straight-line, 90°
rectangle replaces a crude box ), designers may
well prefer to retain the sloppy -- and perhaps
suggestive -- hand drawn version at least until
they are further along in designing.  Therefore
rectification is performed on a per-glyph basis
and the hand-drawn input data is always retained.
The program can rectify all new glyphs or leave
them as drawn and the designer can always change
the display of particular glyphs.

3.2 Gestural Commands

The designer controls the program using a short
menu of command buttons (left, figure 1).
Frequently used commands such as erase and
undo can also be executed by gestures, which are
trained and recognized just as any other glyph.  A
gestural command can operate on all the glyphs it
touches or on the currently selected glyph or
glyphs.  The designer can touch a glyph to select
it or circle several glyphs and pick the circle to
select its contents.  Figure 11 shows the default
glyphs for several common commands.  Users can
redefine the gesture for any commands simply by
training a new glyph.  To help users learn the
gestural versions of commands, the program has a
“novice mode” that displays the command gesture
whenever the user invokes the menu-button
version of the command.

Figure 11.  A simple set of gestural commands is
provided.  Users can change the default command
glyphs .

3.3 Trace and Transparency

Tracing paper plays an important role in
architectural and engineering design. For
example, a designer can use it to copy most of a
diagram from an underlay, making changes to
certain parts, working all the time in the visual
context of the original design.  At the risk of
mixing metaphors, the cocktail napkin prototype
therefore includes a simulation of tracing paper's
essential functions.  The "trace" command grays
the drawing window and lightens the glyphs to
simulate overlaying a sheet of tracing paper.  The
display routines use graphical transparency to
indicate which layer a glyph is on -- the lower the
layer, the lighter the glyph.  The program keeps
track of multiple layers; tabs displayed on the
upper left of the drawing area (see figure 1) allow
a designer to select, remove, and replace trace
layers.  Glyphs on lower layers may be copied to
the top layer, but only glyphs on the top layer
may be erased.

3.4 What to do with all those
n a p k i n s ?

Although the occasional diagram is detailed and
complicated, typically in early design many
simple diagrams are made quickly and set aside.
The cocktail napkin provides an on-screen catalog
(see figure 1) for storing and viewing old
diagrams, reduced to the size of icons.  These old
diagrams can be selected and recalled to full size,
either replacing the current diagram, or brought
in as a layer of trace.  An obvious next step is to
link related diagrams, for example, diagrams
traced, or combined from others.

3.5 Inferring Context

Glyphs come in categories - the alphabet, simple
shapes, circuit symbols, floorplan elements.  The
training sets for these symbols are stored in
separate files, though they are trained together to
minimize interference.  Each diagram stores a list
of glyph categories that it contains, which the
program can use to resolve ambiguity.  For
example, a looped squiggle might be a spring or a
coil; if the diagram already has other electrical
symbols but no mechanical ones, then the program
identifies the symbol as a coil.  Of course the user
can override this identification.

3.6 Shared Drawing Surface
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The program also supports a simple form of
collaborative diagramming, where designers draw
on the same tablet using different pens or on
separate tablets.  Both designers' marks appear on
the same diagram in different colors, so it is easy
to see who made what mark.

The two pen version uses two different digitizing
pens that produce different pressure values, and
the software samples these values to determine
which pen is being used.   (WACOM Technology
Corp. kindly provided several pens to experiment
with.  Simplest is to use a standard pen and a
pressure-sensing pen.)  Since the pressure-value
profiles of the pens may overlap, the tablet input
routine samples pressure values of the first few
data points just before or just after the pen hits
the tablet to determine which pen is drawing.  The
tablet hardware allows only one pen to draw at a
time but that is also true of small cocktail
napk ins .

The two tablet version uses both Macintosh serial
ports.  Although the designers use separate
physical drawing surfaces share one work area.
The tablet driver arbitrates between ports and
serves whoever first starts drawing, locking out
the other user.  When one user finishes a glyph
the other can begin to draw.

4. INITIAL EXPERIENCE WITH USERS

The cocktail napkin prototype is not stable and
robust enough for extensive and formal user
testing but throughout development we have
subjected a dozen novice users to its evolving
interface (mostly undergraduate architecture
students enrolled in a senior seminar on “the
future of CAD.”)  Although often frustrating, this
form of testing-in-development has been
tremendously valuable in identifying poorly
designed features and interface bugs at a time
when they are still easy to fix.  In several
instances the sometimes naive suggestions of
user-testers have resulted in immediate
improvements to the interface.

There is still a considerable learning period (2-4
hours) before users can obtain reasonable
recognition rates from the program.  To be sure,
the low-level recognition is imperfect and its
training set is individualized to a single way of
drawing the glyphs.  But a good part of the time is
devoted to learning the feel of the tablet-pen
ensemble, the pressure sensitivity range of the

pen, and adjusting hand-eye coordination to the
unfamiliar act of drawing on the tablet while
looking at the screen.  We observed shorter
learning periods when we put paper on the tablet
and ink in the pen and encouraged users to ignore
the computer monitor and look only at the paper.
This suggests that using a touch sensitive display
(as in notepad computers) would shorten the
learning period.

Once they become familiar enough with the
hardware to obtain satisfactory recognition rates,
users seem to have little difficulty performing the
basic operations of the cocktail napkin interface.
After a few hours of practice with the program
novice users seem to enjoy executing gestural
commands, adding new glyphs to the training set,
using the simulated tracing paper, and even
defining search patterns and higher-level
recognizers .

5. CONCLUSIONS

The recognition of simple glyphs in diagrams is
tractable in part because the universe of symbols
is small.  Even a simple recognition algorithm for
low-level glyphs works surprisingly well  Because
the user can train the recognizer the program can
accommodate new symbols and idiosyncratic ways
of drawing.  The cocktail napkin prototype
handles search and recognition of higher-level
arrangements of diagram symbols; a simple
interface for programming this search takes
advantage of ordering elements and relations in a
"more general and specific" hierarchy.  In
addition to recognition and interpretation, the
management of diagrams is equally essential for
design.  The simulated tracing paper, and the
searchable catalog are our first efforts in this
d i rec t ion .

We’re considering a variety of “next steps.”  For
example, it will be relatively straightforward to
connect the cocktail napkin with a small case-
library of floor plans, indexed on room
adjacencies.  Then the program can provide case-
based examples and advice in response to a user’s
sketched bubble-diagram floor plan.  Another
direction is to strengthen the interface and
routines for building higher-level recognizers
from examples.  For example, we have ignored
cardinality -- a simple diagram of a  “sun” (a
circle with radial lines emanating from it) may
have five, six, or seven lines.  Should the
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recognizer automatically generalize cardinality in
the search pattern?

We have in mind a larger diagram-based
environment for design, one in which the program
generates [4], as well as interprets diagrams, and
one that is connected to a variety of tools for
symbolic processing.  We expect our emphasis
will shift away from recognition toward the use of
diagrams in design reasoning, and how computers
can support this process.

ACKNOWLEDGMENTS

My area of interest is making design tools that
serve designers better, by both a careful
understanding of designing and appropriate use of
computational techniques.  My previous work has
been largely in the application of constraint
based techniques to design; the cocktail napkin
project is a first effort in supporting
diagramming.  Since this paper was written we
have used the program to build a query-by-
diagram retrieval scheme for visual databases and
for a constraint based diagrammer, Stretch-a-
Sketch.  Reports on these projects are available
from the author.

Jim Davis at the Cornell Design Research
Institute, Aaron Fleisher at MIT, and Kyle Kuczun
in our group provided valuable arguments.  The
AVI reviewers’ comments were also extremely
helpful.  Funds are being sought to continue the
cocktail napkin project, which was pursued as an
unfunded pilot project. The construction of
constraint management routines (developed for a
different project) was supported by National
Science Foundation grant DMII 93-13186.

REFERENCES

1.  Apte, A., Vo, V., Kimura, T.D. Recognizing
Multistroke Geometric Shapes: An Experimental
Evaluation. In: Proc. ACM conference on User
Interface and Software Technology (UIST).
(Atlanta, GA, 1993), ACM, pp. 121-128.

2.  Bly, S., Harrison, S., Irwin, S. Media Spaces:
Bringing People Together in a Video, Audio, and
Computing Environment. Communications of the
ACM, 36,1, (1993) pp. 26-45.

3.  Chandrasekaran, B., Narayanan, N.H., Iwasaki,
Y. Reasoning with Diagrammatic Representations.
AI Magazine, 14,2, (1993) pp. 49-56.

4.  Ervin, S.M. Designing with Diagrams. In: The
Electronic Design Studio: Architectural
Knowledge and Media in the Computer Age.
McCullough M, Mitchell WJ, Purcell P, Ed.  MIT
Press, Cambridge, MA, 1990, pp. 107-122.

5.  Futrelle, R., Kakadiaris, I.A., Alexander, J.,
Carriero, C.M., Nikolakis, N., Futrelle, J.M.
Understanding Diagrams in Technical Documents.
IEEE Computer, July,(1992) pp. 75-78.

6.  Gero, J.S., ed. Artificial Intelligence in Design
‘92.  Oxford, UK: Butterworth-Heinemann, 1992.

7.  Goel, V. “Ill-structured representations” for
ill-structured problems. In: Proc. Fourteenth
Annual Conference of the Cognitive Science
Society.      (Bloomington, IN, 1992), Hillsdale, NJ:
Erlbaum, pp. 844-849.

8.  Goldschmidt, G. The dialectics of sketching.
Creativity Research Journal, 4,2, (1991) pp. 122-
1 4 3 .

9.  Golin, E., Reiss, S.P. The specification of visual
language syntax. In: Proc. IEEE Workshop on
Visual Languages.  (1989), IEEE Press, pp. 105-
1 1 0 .

10.  Helm, R., Marriott, K., Odersky, M. Building
Visual Language Parsers. In: Proc. Human Factors
in Computing Systems (CHI ‘91).      (New Orleans,
LA, 1991), ACM Press / Addison Wesley, pp. 105-
1 1 2 .

11.  Hentenryck, P.V., Deville, Y., Teng, C.-M. A
generic arc-consistency algorithm and its
specializations. Artificial Intelligence, 57,
(1992) pp. 291-321.

12.  Ishii, H., Miyake, N. Toward an Open Shared
Workspace: Computer and Video Fusion Approach
of Team Workstation. Communications of the ACM,
34,12, (1991) pp. 37-50.

13.  Kurlander, D., Bier, E. Graphical Search and
Replace. In: Proc. SIGGRAPH.  (Atlanta, GA, 1988),
ACM Press, pp. 113-120.

14.  Kurlander, D., Feiner, S. Interactive
Constraint Based Search and Replace. In: Proc.



1 0

Human Factors and Computing Systems (CHI ‘92).
1992, pp. 609-618.

15.  Lakin, F., Wambaugh, J., Leifer, L., Cannon,
D., Steward, C. The electronic notebook:
performing medium and processing medium.
Visual Computer, 5,(1989) pp. 214-226.

16.  Larkin, J., Simon, H. Why a diagram is
(sometimes) worth 10,000 words. Cognitive
Science, 11,(1987) pp. 65-99.

17.  Negroponte, N. Recent advances in sketch
recognition. In: Proc. AFIPS (American Federation
of Information Processing) National Computer
Conference.      (Boston, MA, 1973), pp. 663-675.

18.  Rubine, D. Specifying Gestures by Example.
Computer Graphics, 25,4, (1991) pp. 329-337.

19.  van Sommers, P. Drawing and Cognition -
Descriptive and experimental studies of graphic
production processes. Cambridge University
Press, Cambridge, England, 1984.

20.  Wittenburg, K., Weitzman, L. Visual
Grammars and Incremental Parsing. In: Proc. IEEE
Workshop on Visual Languages.      (Skokie, IL,
1990), pp. 235-243.

21.  Zhao, R. Incremental Recognition in Gesture-
Based and Syntax-Directed Diagram Editors. In:
Proc. INTERCHI ‘93.      (Amsterdam, 1993), ACM /
Addison Wesley, pp. 95-100.


